• 제목/요약/키워드: thermal FEM simulation

검색결과 127건 처리시간 0.026초

열연 판형상 예측 수식모델 개발 (Mathematical expression for the Prediction of Strip Profile in hot rolling mill)

  • 조영석;황상무
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2004년도 춘계학술대회 논문집
    • /
    • pp.70-73
    • /
    • 2004
  • The approach in this thesis is for prediction of deformed strip profile in hot rolling mill. This approach shows how to make an expression as a mathematical form in predicting strip profile. This approach is based on the velocity field, shear stress and material flow on the strip edge along width direction and lateral displacement and stress along width are analytically calculated. Roll force is calculated in each section and then combined together to show roll force distribution along width. All the assumptions to make equation form for this approach are supported by FEM simulation result and the result of model is verified by FEM result. So, this model will supply very useful tool to the researcher and engineers which takes less time and has similar accuracy in predicting roll force profile comparing to FEM simulation. This model has to be combined with deformed roll profile model, which include thermal crown prediction and wear prediction model to predict deformed strip profile.

  • PDF

전자 패키징용 금속복합재료의 온도에 따른 열팽창 특성 (Analysis of Temperature dependent Thermal Expansion Behavior in MMCs for Electronic packaging)

  • 정성욱;남현욱;정창규;한경섭
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2002년도 춘계학술발표대회 논문집
    • /
    • pp.73-76
    • /
    • 2002
  • This study developed SiC/Al composites for electronic packaging to which reinforcements were added with the volume fractions of 49%, 56% and 63% by the squeeze casting method. 0.8 wt.% of the inorganic binder as well as the $Al_2O_3$ fiber and SiC particles with the volume fraction of 1:10 were added to the SiC/Al composites For the produced SiC/Al composites, the CTEs (coefficients of thermal expansion) were measured from 30 to $300^{\circ}C$ and compared with the FEM numerical simulation to analyze the temperature dependent properties. The experiment showed the CTEs of SiC/Al composites that were intermediate values of those of Rule of Mixture and Turner's Model. The CTEs were close to Turner's Model in the room temperature and approached the Rule of Mixture as the temperature increases. These properties analyzed from the difference of the average stress acting between the matrix and the reinforcements proposed in this study

  • PDF

유리 압축 실험에서의 복굴절 분포 예측 (Prediction of Birefringence Distribution in Cylindrical Glass Compression Test)

  • 이주현;나진욱;임성한;오수익
    • 소성∙가공
    • /
    • 제13권6호
    • /
    • pp.509-514
    • /
    • 2004
  • An analysis using FEM simulation was conducted to predict residual stresses and birefringence in simple compressed cylindrical glass as a preliminary part of the optimum design determination of optical lenses. The FEM simulation with the Maxwell viscoelastic constitutive model was used to predict thermal induced residual stresses and birefringence during the compression test considering stress relaxation. Also the linear photoelastic theory was introduced to calculate birefringence from the residual stress state. The error of simulation results between experimental results in the birefringence value at the center of glass specimen is $4.2\%$, and the error in the maximum radius of deformed glass specimen is $1.2\%$. The simulation results were in good agreement with deformation and birefringence distribution in the existing experimental result.

대면적 임프린트 장비를 위한 LCD Glass 변형 시뮬레이션 연구 (LCD Glass strain Simulation For Large Size Imprint Equipment)

  • 송영중;신동훈;임홍재;장시열;이기성;정재일
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.1626-1631
    • /
    • 2007
  • The purpose of the study is to simulate the displacement of the LCD glass during process of a large size imprint. During this process, a small temperature variation makes thermal stress, which causes the horizontal variation of mold and glass. During alignment process to fix the LCD glass on a alignment stage, the vertical displacement is made by the absorption pressure and the shear stress. This study simulates the horizontal displacement of mold and glass due to temperature variation, the vertical displacement depending on the shape of absorption surface fixing the LCD glass in the alignment process, and the horizontal and vertical displacement which occurs in the LCD glass at the alignment process. Algor which is a FEM code for a framework simulation was applied. Temperature variation above ${\pm}$ $0.1^{\circ}C$ on mold and glass causes the horizontal displacement of 150nm due to thermal expansion. The vertical displacement due to the circular is ten times of the case of rectangular absorption nozzle. The displacement of the LCD glass in the alignment process is about 49nm.

  • PDF

전산 열해석 및 적외선 열화상을 이용한 볼베어링의 동적 하중에 따른 진단 계측에 관한 연구 (On Diagnosis Measurement under Dynamic Loading of Ball Bearing using Numerical Thermal Analysis and Infrared Thermography)

  • 홍동표;김호종;김원태
    • 비파괴검사학회지
    • /
    • 제33권4호
    • /
    • pp.355-360
    • /
    • 2013
  • 본 연구에서는 적외선 열화상 카메라를 통하여 베어링의 온도변화를 분석하고, FEM 수치해석을 통하여 모델러에 대한 정상상태에서의 시뮬레이션을 통해 베어링의 열적분포를 해석하였다. 전산 열해석을 위한 유한요소 해석과 열화상 실험을 서로 비교분석하였고 유한요소 전산해석을 통하여 열화상 실험의 정확도를 확인하였다. 본 연구를 통하여 적외선 열화상 실험은 실시간으로 베어링의 상태를 감시할 수 있어 다른 진단방식보다 많은 장점을 가지고 있다. 또한 작업 현장에서 베어링 파손 상태 유무 확인과 파손 방지를 위해서 현장 작업조건을 적용한 유한요소 해석 결과를 비롯하여, 하중조건 회전속도조건, 볼 손상조건, 내외륜 손상조건 등에 따라, 열화상 카메라로 실시간으로 베어링을 감시하면 베어링의 파손을 진단 검출할 수 있다.

50 kVA 주상용 몰드변압기의 설계 및 특성평가 (The Design and Performance Test of Mold Transformer for Outdoor Pole)

  • 조한구;이운용;황보국
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 춘계학술대회 논문집 유기절연재료 전자세라믹 방전플라즈마 일렉트렛트 및 응용기술
    • /
    • pp.132-137
    • /
    • 2002
  • The mold transformers have been widely used in underground substations in large building and have some advantages in comparison to oil-transformer, that is low fire risk, excellent environmental compatibility, compact size and high reliability. In addition, the application of mold transformer for outdoor is possible due to development of epoxy resin. The mold transformer generally has cooling duct between low voltage coil and high voltage coil. A mold transformer made by one body molding method has been developed for small size and low loss. The life of transformer is significantly dependent on the thermal behavior in windings. To analyse winding temperature rise, many transformer designer have calculated temperature distribution and hot spot point by finite element method(FEM). Recently, numerical analyses of transformer are studied for optimum design, that is electric field analysis, magnetic field, potential vibration, thermal distribution and thermal stress. In this paper, the temperature distribution of 50 kVA pole mold transformer for power distribution are investigated by FEM program and the temperature rise test of designed mold transformer carried out and test result is analyzed compare to simulation data. In this result, the designed mold transformer is satisfied to limit value of temperature and the other property is good such as voltage ratio, winding resistance, no-load loss, load loss, impedance voltage and percent regulation.

  • PDF

C0-type Reddy's theory for composite beams using FEM under thermal loads

  • Fan, Xiaoyan;Wu, Zhen
    • Structural Engineering and Mechanics
    • /
    • 제57권3호
    • /
    • pp.457-471
    • /
    • 2016
  • To analyze laminated composite and sandwich beams under temperature loads, a $C^0$-type Reddy's beam theory considering transverse normal strain is proposed in this paper. Although transverse normal strain is taken into account, the number of unknowns is not increased. Moreover, the first derivatives of transverse displacement have been taken out from the in-plane displacement fields, so that the $C^0$ interpolation functions are only required for the finite element implementation. Based on the proposed model, a three-node beam element is presented for analysis of thermal responses. Numerical results show that the proposed model can accurately and efficiently analyze the thermoelastic problems of laminated composites.

유리 압축 실험에서의 복굴절 분포 예측 (Prediction of birefringence distribution in cylindrical glass compression test)

  • 이주현;나진욱;임성한;오수익
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2004년도 춘계학술대회 논문집
    • /
    • pp.95-100
    • /
    • 2004
  • An analysis using FEM simulation was conducted to predict residual stresses and birefringence in simple compressed cylindrical glass as a preliminary part of the optimum design determination of optical lenses. The FEM simulation with the Maxwell viscoelastic constitutive model was used to predict thermal induced residual stresses and birefringence during the compression test considering stress relaxation. Also the linear photoelastic theory was introduced to calculate birefringence from the residual stress state. The simulation results were in good agreement with deformation and birefringence distribution in the existing experimental result.

  • PDF

웨어러블용 Nylon-Yarn NOx 가스 센서의 검출 온도 변화에 따른 열 특성 시뮬레이션 (Thermal Characteristics Simulation with Detecting Temperature for the Wearable Nylon-Yarn NOx Gas Sensors)

  • 장경욱
    • 한국전기전자재료학회논문지
    • /
    • 제33권4호
    • /
    • pp.321-325
    • /
    • 2020
  • Atmospheric environmental problems have a major impact on human health and lifestyle. In humans, inhalation of nitrogen oxides causes respiratory diseases, such as bronchitis. In this paper, thermal analysis of a gas sensor was carried out to design and fabricate a wearable nylon-yarn gas sensor for the detection of NOx gas. In the thermal analysis method, the thermal diffusion process was analyzed while operating the sensors at 40 and 60℃ to secure a temperature range that does not cause thermal runaway due to temperature in the operating environment. Thermal diffusion analysis was performed using the COMSOL software. The thermal analysis results could be useful for analyzing gas adsorption and desorption, as well as the design of gas sensors. The thermal energy diffusion rate increased slightly from 10.05 to 10.1 K/mm as the sensor temperature increased from 40 to 60℃. It was concluded that the sensor could be operated in this temperature range without thermal breakdown.

단조/열처리 공정이 대형 주단조품의 조직변화에 미치는 영향 (Microstructure Change of Large Cast-forged Product by Forging and Heat Treatment Conditions)

  • 이명원;이영선;이승욱;이동회;김상식;문영훈
    • 소성∙가공
    • /
    • 제18권6호
    • /
    • pp.458-464
    • /
    • 2009
  • Thermal energy control is a important factor to control properties of large sized product in ingot-forging. Good control of thermal energy helps to increase characteristics and eliminate defects of large cast-forged part, such as large sized forged shell. We have studied about not only large size ring forging process and after heat treatment process by FEM simulation. Changes of temperature and microstructure for forged shell were predicted according to different heat treatment conditions. Therefore, we can choose the proper heat treatment condition by FEA. The sectional properties confirmed by practical experiment and evaluation have presented possibilities of process design by computational analysis.