• Title/Summary/Keyword: thermal ${\varepsilon}$ martensite

Search Result 4, Processing Time 0.019 seconds

Dependence of Damping Capacity on Volume Fractions of Thermal and Deformation-induced ${\varepsilon}$ Martensites in an Fe-Mn Alloy (Fe-Mn 합금에서 열적 ${\varepsilon}$ 마르텐사이트와 변형유기 ${\varepsilon}$ 마르텐사이트 부피분율에 대한 진동감쇠능의 의존성)

  • Jun, Joong-Hwan;Hong, Kwon-Pyo;Choi, Chong-Sool
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.15 no.6
    • /
    • pp.272-278
    • /
    • 2002
  • The changes in damping capacity with volume fractions of thermal and deformation-induced ${\varepsilon}$ martensites were compared and analyzed in an Fe-23%-Mn alloy. The volume fraction of thermal ${\varepsilon}$ martensite increased with decreasing cooling temperature, whereas that of deformation-induced ${\varepsilon}$ martensite increased steeply up to 10%- of cold rolling and nearly saturated in further cold rolling. In the case of thermal ${\varepsilon}$ martensite, the damping capacity increased linearly with the increase in ${\varepsilon}$ martensite content. For the deformation-induced ${\varepsilon}$ martensite, however, the damping capacity increased continuously up to 70%- of ${\varepsilon}$ martensite, over which it decreased suddenly. TEM microstructures showed that the deterioration of damping capacity above 70%- of deformation-induced ${\varepsilon}$ martensite is ascribed to the introduction of perfect dislocations, which play a important role in inhibiting the movement of damping sources such as stacking fault boundaries inside ${\varepsilon}$ martensite, ${\varepsilon}$ martensite variant boundaries and ${\gamma}/{\varepsilon}$ interfaces.

Effect of Thermal Cycling on Shape Memory Effect and Stabilization of Parent Phase in Fe-21%Mn Alloy (Fe-21%Mn 합금의 형상기억효과와 모상의 안정화에 미치는 반복열처리의 영향)

  • Jin, W.;Choi, C.S.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.4 no.3
    • /
    • pp.31-38
    • /
    • 1991
  • Effect of thermal cycling on shape memory effect and stabilization of austenite was investigated in Fe-21%Mn alloy. The thermal cyclic treatment was carried out with two types, room temperature${\leftrightarrow}215^{\circ}C$ and room temperature${\leftrightarrow}260^{\circ}C$. In case of the room temperature${\leftrightarrow}215^{\circ}C$, the SME was rapidly increased up to 3 cycles and maintained nearly constant value regardless of further cycles. In case of the room temperature${\leftrightarrow}260^{\circ}C$, however, the SME was increased with increasing the thermal cycle up to 5 cycles and decreased gradually with further cycle. The variation of the ${\varepsilon}$ martensite volume pet with the thermal cycle was in good agreement with the variation of the SME. Therefore, the change of the SME due to the cyclic treatment was explained with the change of the ${\varepsilon}$ martensite content. As the thermal cycle was increased, the $M_s$ temperature was decreased, and the $A_s$ and $A_f$ temperatures were increased, respectively.

  • PDF

Influence of Heat Treatment on Transformation Characteristics and Shape Recovery in Fe-X%/Mn-5Cr-5Co-4Si Alloy Ribbons (Fe-X%Mn-5Cr-5Co-4Si 합금 리본의 변태특성 및 형상기억능에 미치는 열처리 영향)

  • Kang, H.W.;Jee, K.K.;Jang, W.Y.;Kang, J.W.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.14 no.3
    • /
    • pp.160-166
    • /
    • 2001
  • The change of ribbon geometry, microstructure and shape recovery with Mn contents, wheel speed and various annealing temperature have been studied in Fe-X%Mn-5Cr-5Co-4Si (X%=15, 20, 24) shape memory alloy (SMA) ribbons rapidly solidfied by single roll chill-block melt-spinning process. The thickness and width of melt-spun ribbons are reduced, results in refining and uniformalizing grains with increasing wheel speed. In the ribbons melt-spun at a wheel speed of 15m/sec, both ${\varepsilon}$ and ${\alpha}^{\prime}$martensites are formed in ribbon 1 (15.5wt%Mn), while only ${\varepsilon}$ martensite is revealed in ribbon 2 (20.2wt%Mn) and ribbon 3 (23.5wt%Mn). The volume fraction of ${\varepsilon}$ martensite is decreased with increasing Mn contents, and those of ${\varepsilon}$ as well ${\alpha}^{\prime}$martensites are increased due to thermal stress relief and grain growth with increasing annealing temperature. Ms temperatures of the ribbons 1, 2 and 3 are fallen with increasing Mn contents. $M_s$ temperatures of the ribbons 1, 2 and 3 annealed at $300^{\circ}C$ for 3 min are risen abruptly, but are nearly constant even at higher annealing temperature, i.e., 400, 500 and $600^{\circ}C$ for 3 min. Shape recovery of the ribbons 1, 2 and 3 increased 30%, 52% and 69% with Mn contents, respectively. Shape recovery of ribbon 1 (15.5wt%Mn) formed ${\varepsilon}$ and ${\alpha}^{\prime}$martensites decreased because of the presence of ${\alpha}^{\prime}$martensite but those of ribbon 2 (20.2wt%Mn) and ribbon 3 (23.5wt%Mn) formed ${\varepsilon}$ martensite increased with increasing annealing temperature.

  • PDF

Effect of Training( SIM↔γ) on Shape Memory Effect of Fe-30%Mn-6%Si Alloy (Fe-30%Mn-6% Si 합금의 형상기억효과에 미치는 Training(SIM↔γ)의 영향)

  • Han, Sang Ho;Jun, Joong Hwan;Choi, Chong Sool
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.7 no.2
    • /
    • pp.118-128
    • /
    • 1994
  • Five alloys were selected randomly in the composition range showing the best shape memory effect in Fe-Mn-Si system reported by Murakami. The shape memory effects of those alloys were mainly investigated through the training treatment which consisted of the repetition of 2% tensile deformation at room temperature and subsequent annealing at $600^{\circ}C$ above $A_r$ temperature. At the same deformation degress in rolling $600^{\circ}C$-annealing for 1 hr. showed the best shape memory effect, and 10%-deformation degrees represented maxima of the shpae memory effects at all annealing temperatures, $500^{\circ}C$, $600^{\circ}C$ and $700^{\circ}C$. The shape memory effects of the alloys were increased by increasing training cycle up to 5 cycles. This was because a large number of dislocations introduced by training process gave rise to increase in the austenite yield stress, and acted as nucleation sites for stress induced ${\varepsilon}$ martensite. The thermal cycling treatment, repetition of cooling in nitrogen at $-196{\circ}C$ and heating to $300^{\circ}C$ for 5 min., did not improve the shape memory effect.

  • PDF