• Title/Summary/Keyword: therapeutic tool

Search Result 344, Processing Time 0.023 seconds

Cancer Cell Targeting with Mouse TERT-Specific Group I Intron of Tetrahymena thermophila

  • Ban, Gu-Yee;Song, Min-Sun;Lee, Seong-Wook
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.9
    • /
    • pp.1070-1076
    • /
    • 2009
  • Telomerase reverse transcriptase (TERT), which prolongs the replicative life span of cells, is highly upregulated in 85-90% of human cancers, whereas most normal somatic tissues in humans express limited levels of the telomerase activity. Therefore, TERT has been a potential target for anticancer therapy. Recently, we described a new approach to human cancer gene therapy, which is based on the group I intron of Tetrahymena thermophila. This ribozyme can specifically mediate RNA replacement of human TERT (hTERT) transcript with a new transcript harboring anticancer activity through a trans-splicing reaction, resulting in selective regression of hTERT-positive cancer cells. However, to validate the therapeutic potential of the ribozyme in animal models, ribozymes targeting inherent transcripts of the animal should be developed. In this study, we developed a Tetrahymena-based trans-splicing ribozyme that can specifically target and replace the mouse TERT (mTERT) RNA. This ribozyme can trigger transgene activity not only also in mTERT-expressing cells but hTERT-positive cancer cells. Importantly, the ribozyme could selectively induce activity of the suicide gene, a herpes simplex virus thymidine kinase gene, in cancer cells expressing the TERT RNA and thereby specifically hamper the survival of these cells when treated with ganciclovir. The mTERT-targeting ribozyme will be useful for evaluation of the RNA replacement approach as a cancer gene therapeutic tool in the mouse model with syngeneic tumors.

Role of Cerebrospinal Fluid Biomarkers in Clinical Trials for Alzheimer's Disease Modifying Therapies

  • Kang, Ju-Hee;Ryoo, Na-Young;Shin, Dong Wun;Trojanowski, John Q.;Shaw, Leslie M.
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.18 no.6
    • /
    • pp.447-456
    • /
    • 2014
  • Until now, a disease-modifying therapy (DMT) that has an ability to slow or arrest Alzheimer's disease (AD) progression has not been developed, and all clinical trials involving AD patients enrolled by clinical assessment alone also have not been successful. Given the growing consensus that the DMT is likely to require treatment initiation well before full-blown dementia emerges, the early detection of AD will provide opportunities to successfully identify new drugs that slow the course of AD pathology. Recent advances in early detection of AD and prediction of progression of the disease using various biomarkers, including cerebrospinal fluid (CSF) $A{\beta}_{1-42}$, total tau and p-tau181 levels, and imagining biomarkers, are now being actively integrated into the designs of AD clinical trials. In terms of therapeutic mechanisms, monitoring these markers may be helpful for go/no-go decision making as well as surrogate markers for disease severity or progression. Furthermore, CSF biomarkers can be used as a tool to enrich patients for clinical trials with prospect of increasing statistical power and reducing costs in drug development. However, the standardization of technical aspects of analysis of these biomarkers is an essential prerequisite to the clinical uses. To accomplish this, global efforts are underway to standardize CSF biomarker measurements and a quality control program supported by the Alzheimer's Association. The current review summarizes therapeutic targets of developing drugs in AD pathophysiology, and provides the most recent advances in the clinical utility of CSF biomarkers and the integration of CSF biomarkers in current clinical trials.

Screening for in vitro Cytotoxic Activity of Seaweed, Sargassum sp. Against Hep-2 and MCF-7 Cancer Cell Lines

  • Mary, J. Stella;Vinotha, P.;Pradeep, Andrew M.
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.12
    • /
    • pp.6073-6076
    • /
    • 2012
  • Discovery of anticancer drugs that kill or disable tumor cells in the presence of normal cells without undue toxicity is a potential challenge for therapeutic care. Several papers in the literature have emphasized the potential implications of marine products such as seaweeds which exhibit antitumor activity. Study attempts to screen the antitumor effect of Sargassum sp, against chosen cell lines such as MCF-7 (Breast cancer) and Hep-2 (Liver Cancer). Ethanol extract of Sargassum sp. was concentrated using a Soxhlet apparatus and dissolved in DMSO. In vitro cytotoxic activity of Sargassum sp at various concentrations ($100{\mu}g/ml-300{\mu}g/ml$) screened for antitumor effect against the chosen cell lines using MTT assay (3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide, a yellow tetrazole). The study documented that the percentage of cell viability has been reduced with increased concentration, as evidenced by cell death. Sargassum sp extract shows potential cytotoxic activity ($P{\leq}0.05$) with $IC_{50}$ of $200{\mu}g/ml$ and $250{\mu}g/ml$ against Hep-2 and MCF-7 cell lines respectively. The ethanol fraction of Sargassum sp induced cell shrinkage, cell membrane blebbing and formation of apoptotic bodies with evidence of bioactive components as profound influencing factors for anti-tumor effects. Further research need to be explored for the successful application of Sargassum sp as a potent therapeutic tool against cancer.

Compound HRAS/PIK3CA Mutations in Chinese Patients with Alveolar Rhabdomyosarcomas

  • Liu, Chun-Xia;Li, Xiao-Ying;Li, Cheng-Fang;Chen, Yun-Zhao;Cui, Xiao-Bin;Hu, Jian-Ming;Li, Feng
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.4
    • /
    • pp.1771-1774
    • /
    • 2014
  • The rhabdomyosarcoma (RMS) is the most common type of soft tissue tumor in children and adolescents; yet only a few screens for oncogenic mutations have been conducted for RMS. To identify novel mutations and potential therapeutic targets, we conducted a high-throughput Sequenom mass spectrometry-based analysis of 238 known mutations in 19 oncogenes in 17 primary formalin-fixed paraffin-embedded RMS tissue samples and two RMS cell lines. Mutations were detected in 31.6% (6 of 19) of the RMS specimens. Specifically, mutations in the NRAS gene were found in 27.3% (3 of 11) of embryonal RMS cases, while mutations in NRAS, HRAS, and PIK3CA genes were identified in 37.5% (3 of 8) of alveolar RMS (ARMS) cases; moreover, PIK3CA mutations were found in 25% (2 of 8) of ARMS specimens. The results demonstrate that tumor profiling in archival tissue samples is a useful tool for identifying diagnostic markers and potential therapeutic targets and suggests that these HRAS/ PIK3CA mutations play a critical role in the genesis of RMS.

Development Treatment Planning System Based on Monte-Carlo Simulation for Boron Neutron Capture Therapy

  • Kim, Moo-Sub;Kubo, Kazuki;Monzen, Hajime;Yoon, Do-Kun;Shin, Han-Back;Kim, Sunmi;Suh, Tae Suk
    • Progress in Medical Physics
    • /
    • v.27 no.4
    • /
    • pp.232-235
    • /
    • 2016
  • The purpose of this study is to develop the treatment planning system (TPS) based on Monte-Carlo simulation for BNCT. In this paper, we will propose a method for dose estimation by Monte-Carlo simulation using the CT image, and will evaluate the accuracy of dose estimation of this TPS. The complicated geometry like a human body allows defining using the lattice function in MCNPX. The results of simulation such as flux or energy deposition averaged over a cell, can be obtained using the features of the tally provided by MCNPX. To assess the dose distribution and therapeutic effect, dose distribution was displayed on the CT image, and dose volume histogram (DVH) was employed in our developed system. The therapeutic effect can be efficiently evaluated by these evaluation tool. Our developed TPS could be effectively performed creating the voxel model from CT image, the estimation of each dose component, and evaluation of the BNCT plan.

Case Study of Diagnosis and Treatment of Thoracic Gunshot Trauma in a Dog by Computed Tomography (흉부 총상견에서 CT 촬영을 통한 흉부외상의 진단 및 치료 증례)

  • Shim, Kyung-Mi;Kim, Se-Eun;Yoo, Kyeong-Hoon;Park, Hyun-Jung;Bae, Chun-Sik;Choi, Seok-Hwa;Kim, Seong-Soo
    • Journal of Veterinary Clinics
    • /
    • v.24 no.1
    • /
    • pp.46-50
    • /
    • 2007
  • A 7-year-old female, Jindo dog was referred to the Veterinary Teaching Hospital with mild dyspnea and anorexia due to a gunshot trauma. The dog was wounded in the thoracic region 3 days ago. Plain radiographs showed the left 8th rib fracture, interstitial pattern in the left caudal lung field and pleural effusion. Abdominal radiographs showed the lead bullet. Computed tomographs(CT) showed the size of pulmonary contusion, laceration, lung parenchymal injuries, hemothorax and perforation of abdominal wall. The therapeutic plan was based on abnormalities seen on CT scans but not clearly seen in survey radiographs. Thoracic CT significantly provides even more informations compared with the corresponding radiographs in thoracic gunshot trauma. Although thoracic survey radiographs are useful as a screening tool, CT is highly sensitive in detecting thoracic injuries after thoracic trauma and is superior to routine thoracic survey radiographs in visualizing lung contusion, pneumothorax and hemothorax. Therefore, we recommend CT in the initial diagnostic work-up of patients with thoracic injuries and with suspected chest trauma because early and exact diagnosis of all thoracic injuries along with sufficient therapeutic consequences may reduce complications.

The Role and Application of Biomarkers and Surrogate Endpoints for New Drug Development : Focused on Diabetes Mellitus and Osteoporosis (당뇨병 및 골다공증 치료제의 효율적인 신약개발을 위한 생체표지자 및 대리 결과 변수의 역할 및 활용)

  • Seong, Soo-Hyeon;Yun, Hwi-Yeol;Baek, In-Hwan;Kang, Won-Ku;Chang, Jung-Yun;Seo, Kyung-Won;Kwon, Kwang-Il
    • YAKHAK HOEJI
    • /
    • v.52 no.5
    • /
    • pp.331-344
    • /
    • 2008
  • Recently, the FDA (Food and Drug Administration) of the United States and many advanced countries remark biomarkers and surrogate endpoints as a critical path tool on model based drug development. Economic, technical and social profit on model based drug development like a reduction of the length of research and development have been achieved. Therefore we summarize previous studies about biomarkers and surrogate endpoints and suggest a development direction of therapeutic agents. In diabetes mellitus (DM) and osteoporosis, there are remarkable increases in number of patients and most of patients take medicine during their whole lifetime. For this reason, many patients with DM and osteoporosis have a tolerance on their medicine. We expect that research and development on biomarkers and surrogate endpoints will contribute to new drug development on DM and osteoporosis. Biomarkers for DM are blood levels of glucose, insulin, ${HbA}_{1c}$, CRP, alpha-glucosidase, adiponectin and DPP-4. Among these, validated surrogate endpoints for DM are blood levels of glucose, insulin and ${HbA}_{1c}$ Biomarkers for osteoporosis are BMD, BMC, trabecular volume, ICTP, DPD, osteocalcin, the activity of osteoclast and production of osteoblast. The validated surrogate endpoints for osteoporosis are BMD only. This review summarizes all suggested biomarkers and surrogate endpoints in DM and osteoporosis. The biomarkers are classified by drugs, and the method of validation for surrogate endpoints is suggested. This information would contribute to suggest a direction of DM and osteoporosis therapeutic agent development.

The Effect of Radiation Therapy on Cellular Immune Response in Patients with Squamous Cell Lung Carcinoma (폐암 환자에서 방사선치료가 세포성 면역반응에 미치는 영향)

  • Uh, Soo-Taek;Kim, Chul-Hyun;Chung, Yeon-Tae;Kim, Yong-Hun;Park, Choon-Sik;Lee, Hi-Bahl;Huh, Seung-Jae
    • Tuberculosis and Respiratory Diseases
    • /
    • v.38 no.1
    • /
    • pp.25-33
    • /
    • 1991
  • The immune staus is known to be decreased in malignant disease and radiation therapy (RT), used as a therapeutic tool, further decrease this-attenuated immune status. We measured the number of peripheral lymphocytes, its subsets and lymphoblast transformation for PPD, PHA, monoclonal antibodies including anti-CD3 and anti-CD2 before and after RT in 19 patients with squamous cell lung cancer to search the fine mechanism behind the RT-induced attenuation of lymphoblast transformtion for mitogens and antigen. The results were as follows; 1) The number of lymphocytes and its subsets decreased significantly after RT, but the percentages of lymhocyte subsets did not change aftr RT except interleukin-2 receptor positive T lymphocytes. 2) The function of lymphoctes, measured by lymphoblast tranformation for PHA and PPD, decrased after RT and the compositions of PBMC used for lymphoblast transformtion were not different before and after RT. 3) The mitosis of lymphocytes to anti-CD2 or anti-CD3 decreased significantly after RT. And IL-2 plus anti-CD3 increased the mitosis than that of anti-CD3 only after RT, but before RT there was no difference. In conclusion, we suggested the fine mechanism behind the RT-induced attenuation of immune response might be the dysfunction of lymphocytes in terms of impaired synthesis of IL-2 rather than the decrease of circulating lymphocyte numbers.

  • PDF

Differentiation of Human Mesenchymal Stem Cells towards Neuronal Lineage: Clinical Trials in Nervous System Disorders

  • Hernandez, Rosa;Jimenez-Luna, Cristina;Perales-Adan, Jesus;Perazzoli, Gloria;Melguizo, Consolacion;Prados, Jose
    • Biomolecules & Therapeutics
    • /
    • v.28 no.1
    • /
    • pp.34-44
    • /
    • 2020
  • Mesenchymal stem cells (MSCs) have been proposed as an alternative therapy to be applied into several pathologies of the nervous system. These cells can be obtained from adipose tissue, umbilical cord blood and bone marrow, among other tissues, and have remarkable therapeutic properties. MSCs can be isolated with high yield, which adds to their ability to differentiate into non-mesodermal cell types including neuronal lineage both in vivo and in vitro. They are able to restore damaged neural tissue, thus being suitable for the treatment of neural injuries, and possess immunosuppressive activity, which may be useful for the treatment of neurological disorders of inflammatory etiology. Although the long-term safety of MSC-based therapies remains unclear, a large amount of both pre-clinical and clinical trials have shown functional improvements in animal models of nervous system diseases following transplantation of MSCs. In fact, there are several ongoing clinical trials evaluating the possible benefits this cell-based therapy could provide to patients with neurological damage, as well as their clinical limitations. In this review we focus on the potential of MSCs as a therapeutic tool to treat neurological disorders, summarizing the state of the art of this topic and the most recent clinical studies.

The Effectiveness of Non-pharmacological Interventions on Anxiety in Children Undergoing Surgery: A Systematic Review and Meta-analysis (수술 환아의 불안에 적용한 비약물적 중재의 효과: 체계적 문헌고찰 및 메타분석)

  • Kim, Hyeon-Young;Shin, Sun Hwa
    • Journal of East-West Nursing Research
    • /
    • v.27 no.1
    • /
    • pp.1-13
    • /
    • 2021
  • Purpose: The purpose of this study was to examine the effectiveness of non-pharmacological interventions for reducing perioperative anxiety in children undergoing surgery. Methods: A systematic review of randomized controlled trials (RCTs) with the primary outcome of children's perioperative anxiety was conducted. The literature search was performed using various databases, including Cochrane Library, CINAHL, EMBASE, PubMed, and Korean electronic databases with confined to RCTs between 2000 and 2020. A total of sixteen studies were suitable the inclusion criteria and were systematically reviewed. The bias risk of randomized studies was evaluated using Cochrane's risk of bias tool. For the meta-analysis, RevMan 5.4 was used to analyze effect sizes of interventional factors. Results: Finally, twelve RCTs studies were used for meta-analysis. The non-pharmacological interventions implemented to reduce perioperative anxiety in children were therapeutic play, clown therapy and information provision. First, therapeutic play had a significant effect on reducing preoperative anxiety, with an effect size of -1.46 (95% CI=-1.78~-1.14). Second, clown therapy had a significant effect on reducing preoperative anxiety, with an effect size of -0.97 (95% CI=-1.45~-0.49). Finally, the provision of information had a significant effect on reducing preoperative anxiety, with an effect size of -0.75 (95% CI=-0.99~-0.51). Conclusion: This meta-analysis suggests that non-pharmaceutical interventions provide effective methods of reducing perioperative anxiety in children. Therefore, the findings verify evidence that various non-pharmacological interventions are effective means for reducing children's preoperative anxiety.