• Title/Summary/Keyword: therapeutic target

Search Result 964, Processing Time 0.027 seconds

Hepatotoxic mechanism of diclofenac sodium on broiler chicken revealed by iTRAQ-based proteomics analysis

  • Sun, Chuanxi;Zhu, Tianyi;Zhu, Yuwei;Li, Bing;Zhang, Jiaming;Liu, Yixin;Juan, Changning;Yang, Shifa;Zhao, Zengcheng;Wan, Renzhong;Lin, Shuqian;Yin, Bin
    • Journal of Veterinary Science
    • /
    • v.23 no.4
    • /
    • pp.56.1-56.17
    • /
    • 2022
  • Background: At the therapeutic doses, diclofenac sodium (DFS) has few toxic side effects on mammals. On the other hand, DFS exhibits potent toxicity against birds and the mechanisms remain ambiguous. Objectives: This paper was designed to probe the toxicity of DFS exposure on the hepatic proteome of broiler chickens. Methods: Twenty 30-day-old broiler chickens were randomized evenly into two groups (n = 10). DFS was administered orally at 10mg/kg body weight in group A, while the chickens in group B were perfused with saline as a control. Histopathological observations, serum biochemical examinations, and quantitative real-time polymerase chain reaction were performed to assess the liver injury induced by DFS. Proteomics analysis of the liver samples was conducted using isobaric tags for relative and absolute quantification (iTRAQ) technology. Results: Ultimately, 201 differentially expressed proteins (DEPs) were obtained, of which 47 were up regulated, and 154 were down regulated. The Gene Ontology classification and Kyoto Encyclopedia of Genes and Genomes pathway analysis were conducted to screen target DEPs associated with DFS hepatotoxicity. The regulatory relationships between DEPs and signaling pathways were embodied via a protein-protein interaction network. The results showed that the DEPs enriched in multiple pathways, which might be related to the hepatotoxicity of DFS, were "protein processing in endoplasmic reticulum," "retinol metabolism," and "glycine, serine, and threonine metabolism." Conclusions: The hepatotoxicity of DFS on broiler chickens might be achieved by inducing the apoptosis of hepatocytes and affecting the metabolism of retinol and purine. The present study could provide molecular insights into the hepatotoxicity of DFS on broiler chickens.

GATA2-Mediated Transcriptional Activation of Notch3 Promotes Pancreatic Cancer Liver Metastasis

  • Lin, Heng;Hu Peng;Zhang, Hongyu;Deng, Yong;Yang, Zhiqing;Zhang, Leida
    • Molecules and Cells
    • /
    • v.45 no.5
    • /
    • pp.329-342
    • /
    • 2022
  • The liver is the predominant metastatic site for pancreatic cancer. However, the factors that determine the liver metastasis and the specific molecular mechanisms are still unclear. In this study, we used human pancreatic cancer cell line Hs766T to establish Hs766T-L3, a subline of Hs766T with stable liver metastatic ability. We performed RNA sequencing of Hs766T-L3 and its parental cell line Hs766T, and revealed huge differences in gene expression patterns and pathway activation between these two cell lines. We correlated the difference in pathway activation with the expression of the four core transcriptional factors including STAT1, NR2F2, GATA2, and SMAD4. Using the TCGA database, we examined the relative expression of these transcription factors (TFs) in pan-cancer and their relationship with the prognosis of the pancreatic cancer. Among these TFs, we considered GATA2 is closely involved in tumor metastasis and may serve as a potential metastatic driver. Further in vitro and in vivo experiments confirmed that GATA2-mediated transcriptional activation of Notch3 promotes the liver metastasis of Hs766T-L3, and knockdown of either GATA2 or Notch3 reduces the metastatic ability of Hs766T-L3. Therefore, we claim that GATA2 may serve as a metastatic driver of pancreatic cancer and a potential therapeutic target to treat liver metastasis of pancreatic cancer.

Various expression patterns of pregnancy-associated plasma protein-A

  • Jeon, Eunjeong;Lee, Jihwan;Son, Junkyu;Kim, Doosan;Lim, Dajeong;Han, Man-Hye;Hwang, Seongsoo
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.37 no.3
    • /
    • pp.155-161
    • /
    • 2022
  • Pregnancy-associated plasma protein-A (PAPP-A) is known as an important biomarker for fetal abnormality during first trimester and has a pivotal role in follicle development and corpus luteum formation. And also, it is being revealed that an expression of PAPP-A in various cells and tissues such as cancer and lesion area. PAPP-A is the major IGF binding protein-4 (IGFBP-4) protease. Cleavage of IGFBP-4 results in loss of binding affinity for IGF, causing increased IGF bioavailability for proliferation, survival, and migration. Additionally, PAPP-A can be used as a promising therapeutic target for healthy longevity. Despite growing interest, almost nothing is known about how PAPP-A expression is regulated in any tissue. This review will focus on what is currently known about the zinc metalloproteinase, PAPP-A, and its role in cells and tissues. PAPP-A is expressed in proliferating cells such as fetus in uterus, granulosa cells in follicle, dermis in wound, cancer cells, and Sertoli cells in testis. They have common characteristics of proliferation faster than normal cells with stimulating IGFs action and inhibiting IGFBPs. The PAPP-A functions and expression studies in livestock have not yet been conducted much. Further studies are needed to use PAPP-A as a marker for healthy longevity in animal science.

Use of a Rigid-Tipped Microguidewire for the Endovascular Treatment of Cavernous Sinus Dural Arteriovenous Fistulas with an Occluded Inferior Petrosal Sinus

  • Deniwar, Mohamed Adel;Kwon, Boseong;Song, Yunsun;Park, Jung Cheol;Lee, Deok Hee
    • Journal of Korean Neurosurgical Society
    • /
    • v.65 no.5
    • /
    • pp.688-696
    • /
    • 2022
  • Objective : Transvenous embolization (TVE) via an occluded inferior petrosal sinus (IPS) in a cavernous sinus dural arteriovenous fistula (CSDAVF) is challenging, often requiring navigation of a microcatheter through resistive obstacles between the occluded IPS and shunted pouch (SP), although the reopening technique was successfully performed. We report five cases of successful access to the cavernous sinus (CS) or SP using the rigid-tipped microguidewire such as chronic total occlusion (CTO) wire aiming to share our initial experience with this wire. Methods : In this retrospective study, four patients with CSDAVF underwent five procedures using the CTO wire puncture during transfemoral transvenous coil embolization. Puncture success, shunt occlusion, and complications including any hemorrhage and cranial nerve palsy were evaluated. Results : Despite successful access through the occluded IPS, further entry into the target area using neurointerventional devices was impossible due to a short-segment stricture before the CS (three cases) and a membranous barrier within the CS (two cases). However, puncturing these structures using the rigid-tipped microguidewire was successful in all cases. We could advance the microcatheter over the rigid-tipped microguidewire for the navigation to the SP and achieved complete occlusion of the SP without complications. Conclusion : The use of the rigid-tipped microguidewire in the TVE via the occluded IPS of the CSDAVF would be feasible and safe.

HMGB1 increases RAGE expression in vascular smooth muscle cells via ERK and p-38 MAPK-dependent pathways

  • Jang, Eun Jeong;Kim, Heejeong;Baek, Seung Eun;Jeon, Eun Yeong;Kim, Ji Won;Kim, Ju Yeon;Kim, Chi Dae
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.26 no.5
    • /
    • pp.389-396
    • /
    • 2022
  • The increased expression of receptors for advanced glycation end-product (RAGE) is known as a key player in the progression of vascular remodeling. However, the precise signal pathways regulating RAGE expression in vascular smooth muscle cells (VSMCs) in the injured vasculatures are unclear. Given the importance of mitogen-activated protein kinase (MAPK) signaling in cell proliferation, we investigated the importance of MAPK signaling in high-mobility group box 1 (HMGB1)-induced RAGE expression in VSMCs. In HMGB1 (100 ng/ml)-stimulated human VSMCs, the expression of RAGE mRNA and protein was increased in association with an increase in AGE-induced VSMC proliferation. The HMGB1-induced RAGE expression was attenuated in cells pretreated with inhibitors for ERK (PD98059, 10 μM) and p38 MAPK (SB203580, 10 μM) as well as in cells deficient in ERK and p38 MAPK using siRNAs, but not in cells deficient of JNK signaling. In cells stimulated with HMGB1, the phosphorylation of ERK, JNK, and p38 MAPK was increased. This increase in ERK and p38 MAPK phosphorylation was inhibited by p38 MAPK and ERK inhibitors, respectively, but not by JNK inhibitor. Moreover, AGE-induced VSMC proliferation in HMGB1-stimulated cells was attenuated in cells treated with ERK and p38 MAPK inhibitors. Taken together, our results indicate that ERK and p38 MAPK signaling are involved in RAGE expression in HMGB1-stimulated VSMCs. Thus, the ERK/p38 MAPK-RAGE signaling axis in VSMCs was suggested as a potential therapeutic target for vascular remodeling in the injured vasculatures.

circRNA circSnx12 confers Cisplatin chemoresistance to ovarian cancer by inhibiting ferroptosis through a miR-194-5p/SLC7A11 axis

  • Kaiyun Qin;Fenghua Zhang;Hongxia Wang;Na Wang;Hongbing Qiu;Xinzhuan Jia;Shan Gong;Zhengmao Zhang
    • BMB Reports
    • /
    • v.56 no.3
    • /
    • pp.184-189
    • /
    • 2023
  • Ovarian cancer (OC) is the most common gynecological malignancy worldwide, and chemoresistance occurs in most patients, resulting in treatment failure. A better understanding of the molecular processes underlying drug resistance is crucial for development of efficient therapies to improve OC patient outcomes. Circular RNAs (circRNAs) and ferroptosis play crucial roles in tumorigenesis and resistance to chemotherapy. However, little is known about the role(s) of circRNAs in regulating ferroptosis in OC. To gain insights into cisplatin resistance in OC, we studied the ferroptosis-associated circRNA circSnx12. We evaluated circSnx12 expression in OC cell lines and tissues that were susceptible or resistant to cisplatin using quantitative real-time PCR. We also conducted in vitro and in vivo assays examining the function and mechanism of lnc-LBCSs. Knockdown of circSnx12 rendered cisplatin-resistant OC cells more sensitive to cisplatin in vitro and in vivo by activating ferroptosis, which was at least partially abolished by downregulation of miR-194-5p. Molecular mechanics studies indicate that circSnx12 can be a molecular sponge of miR-194-5p, which targets SLC7A11. According to our findings, circSnx12 ameliorates cisplatin resistance by blocking ferroptosis via a miR-194-5p/SLC7A11 pathway. CircARNT2 may thus serve as an effective therapeutic target for overcoming cisplatin resistance in OC.

Hycanthone Inhibits Inflammasome Activation and Neuroinflammation-Induced Depression-Like Behaviors in Mice

  • Kyung-Jun, Boo;Edson Luck, Gonzales;Chilly Gay, Remonde;Jae Young, Seong;Se Jin, Jeon;Yeong-Min, Park;Byung-Joo, Ham;Chan Young, Shin
    • Biomolecules & Therapeutics
    • /
    • v.31 no.2
    • /
    • pp.161-167
    • /
    • 2023
  • Despite the various medications used in clinics, the efforts to develop more effective treatments for depression continue to increase in the past decades mainly because of the treatment-resistant population, and the testing of several hypotheses- and target-based treatments. Undesirable side effects and unresponsiveness to current medications fuel the drive to solve this top global health problem. In this study, we focused on neuroinflammatory response-mediated depression which represents a cluster of depression etiology both in animal models and humans. Several meta-analyses reported that proinflammatory cytokines such as interleukin 6 (IL-6) and tumor necrosis factor-α (TNF-α) were increased in major depressive disorder patients. Inflammatory mediators implicated in depression include type-I interferon and inflammasome pathways. To elucidate the molecular mechanisms of neuroinflammatory cascades underlying the pathophysiology of depression, we introduced hycanthone, an antischistosomal drug, to check whether it can counteract depressive-like behaviors in vivo and normalize the inflammation-induced changes in vitro. Lipopolysaccharide (LPS) treatment increased proinflammatory cytokine expression in the murine microglial cells as well as the stimulation of type I interferon-related pathways that are directly or indirectly regulated by Janus kinase-signal transducer and activator of transcription (JAK-STAT) activation. Hycanthone treatment attenuated those changes possibly by inhibiting the JAK-STAT pathway and inflammasome activation. Hycanthone also ameliorated depressive-like behaviors by LPS. Taken together, we suggest that the inhibitory action of hycanthone against the interferon pathway leading to attenuation of depressive-like behaviors can be a novel therapeutic mechanism for treating depression.

Analysis of the Active Compounds and Therapeutic Mechanisms of Yijin-tang on Meniere's Disease Using Network Pharmacology(II) (네트워크 약리학을 활용한 메니에르병에 대한 이진탕(二陳湯)의 활성 성분과 치료 기전 연구(II))

  • SunKyung Jin;HaeJeong Nam
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.36 no.2
    • /
    • pp.1-9
    • /
    • 2023
  • Objectives : This study used a network pharmacology approach to analyze the treatment mechanisms of Yijin-tang on Meniere's disease, and comparative analysis the treatment mechanisms of drugs recommended in the Meniere's disease treatment guidelines. Methods : We collected information on the recommended drugs from the Meniere's disease treatment guidelines and their target proteins were screened via the STITCH database. The intersection targets were obtained through Venny 2.1.0. Gene Ontology(GO) analysis and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway analysis were performed using ClueGO. Results : The 7 proteins(TNF, CASP9, PARP1, CCL2, CFTR, NOS2, NOS1) were associated with both Yijin-tang and Meniere's disease related genes. The 10 proteins(AQP2, KCNE1, AQP1, AVP, ACE, HRH1, HRH3, NOS1, CA1, CFTR) were associated with both the recommended drugs in the guidelines and Meniere's disease related genes. The 2 proteins(CFTR, NOS1) were common across all three groups. Further, GO/KEGG pathway analysis of the collected proteins revealed that the common mechanisms of action between Yijin-tang and the recommended drugs in the guidelines were related to pathways involving immune dysfunction and disturbances in lymphatic fluid homeostasis. In addition, the recommended drugs in the guidelines appeared to act through mechanisms that improve blood flow through vasodilation. Conclusions : Pharmacological network analysis can help to explain the treatment mechanisms of Yijin-tang on Meniere's disease.

Hyaluronic acid and proteoglycan link protein 1 suppresses platelet-derived growth factor-BB-induced proliferation, migration, and phenotypic switching of vascular smooth muscle cells

  • Dan Zhou;Hae Chan Ha;Goowon Yang;Ji Min Jang;Bo Kyung Park;Bo Kyung Park;In Chul Shin;Dae Kyong Kim
    • BMB Reports
    • /
    • v.56 no.8
    • /
    • pp.445-450
    • /
    • 2023
  • The development of atherosclerotic cardiovascular disease is associated with the phenotypic switching of vascular smooth muscle cells (SMCs) from a contractile to a synthetic state, leading to cell migration and proliferation. Platelet-derived growth factor-BB (PDGF-BB) modulates this de-differentiation by initiating a number of biological processes. In this study, we show that gene expression of hyaluronic acid (HA) and proteoglycan link protein 1 (HAPLN1) was upregulated during differentiation of human aortic SMCs (HASMCs) into a contractile state, but downregulated upon during PDGF-BB-induced dedifferentiation. This is the first study showing that the treatment of HASMCs with full-length recombinant human HAPLN1 (rhHAPLN1) significantly reversed PDGF-BB-induced decrease in the protein levels of contractile markers (SM22α, α-SMA, calponin, and SM-MHC), and inhibited the proliferation and migration of HASMCs induced by PDGF-BB. Furthermore, our results show that rhHAPLN1 significantly inhibited the phosphorylation of FAK, AKT, STAT3, p38 MAPK and Raf mediated by the binding of PDGF-BB to PDGFRβ. Together, these results indicated that rhHAPLN1 can suppress the PDGF-BB-stimulated phenotypic switching and subsequent de-differentiation of HASMCs, highlighting its potential as a novel therapeutic target for atherosclerosis and other vascular diseases.

C4orf47 is a Novel Prognostic Biomarker and Correlates with Infiltrating Immune Cells in Hepatocellular Carcinoma

  • Hye-Ran Kim;Choong Won Seo;Sang Jun Han;Jongwan Kim
    • Biomedical Science Letters
    • /
    • v.29 no.1
    • /
    • pp.11-25
    • /
    • 2023
  • In hepatocellular carcinoma (HCC), chromosome 4 open-reading frame 47 (C4orf47) has not been so far investigated for its prognostic value or association with infiltrating immune cells. We performed bioinformatics analysis on HCC data and analyzed the data using online databases such as TIMER, UALCAN, Kaplan-Meier plotter, LinkedOmics, and GEPIA2. We found that C4orf47 expression in HCC was higher compared to normal tissues. High C4orf47 expression was associated with a worse prognosis in HCC. The correlation between C4orf47 and infiltrating immune cells is positively associated with CD4+T cells, B cells, neutrophils, macrophages, and dendritic cells in HCC. Moreover, high C4orf47 expression was correlated with a poor prognosis of infiltrating immune cells. Analysis of C4orf47 gene co-expression networks revealed that 12501 genes were positively correlated with C4orf47, whereas 7200 genes were negatively correlated. The positively related genes of C4orf47 are associated with a high hazard ratio in different types of cancer, including HCC. Regarding the biological functions of C4orf47 gene, it mainly regulates RNA metabolic process, DNA replication, and cell cycle. The C4orf47 gene may play a prognostic role by regulating the global transcriptome process in HCC. Our findings demonstrate that high C4orf47 expression correlates with poor prognosis and tumor-infiltrating immune cells in HCC. We suggest that C4orf47 is a novel prognostic biomarker and potential immune therapeutic target for HCC.