Browse > Article
http://dx.doi.org/10.14348/molcells.2022.2176

GATA2-Mediated Transcriptional Activation of Notch3 Promotes Pancreatic Cancer Liver Metastasis  

Lin, Heng (Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University))
Hu Peng (Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University))
Zhang, Hongyu (Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University))
Deng, Yong (Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University))
Yang, Zhiqing (Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University))
Zhang, Leida (Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University))
Abstract
The liver is the predominant metastatic site for pancreatic cancer. However, the factors that determine the liver metastasis and the specific molecular mechanisms are still unclear. In this study, we used human pancreatic cancer cell line Hs766T to establish Hs766T-L3, a subline of Hs766T with stable liver metastatic ability. We performed RNA sequencing of Hs766T-L3 and its parental cell line Hs766T, and revealed huge differences in gene expression patterns and pathway activation between these two cell lines. We correlated the difference in pathway activation with the expression of the four core transcriptional factors including STAT1, NR2F2, GATA2, and SMAD4. Using the TCGA database, we examined the relative expression of these transcription factors (TFs) in pan-cancer and their relationship with the prognosis of the pancreatic cancer. Among these TFs, we considered GATA2 is closely involved in tumor metastasis and may serve as a potential metastatic driver. Further in vitro and in vivo experiments confirmed that GATA2-mediated transcriptional activation of Notch3 promotes the liver metastasis of Hs766T-L3, and knockdown of either GATA2 or Notch3 reduces the metastatic ability of Hs766T-L3. Therefore, we claim that GATA2 may serve as a metastatic driver of pancreatic cancer and a potential therapeutic target to treat liver metastasis of pancreatic cancer.
Keywords
GATA2; liver metastasis; Notch3; RNA sequencing;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Siegel, R.L., Miller, K.D., and Jemal, A. (2017). Cancer statistics, 2017. CA Cancer J. Clin. 67, 7-30.   DOI
2 Singel, S.M., Cornelius, C., Batten, K., Fasciani, G., Wright, W.E., Lum, L., and Shay, J.W. (2013). A targeted RNAi screen of the breast cancer genome identifies KIF14 and TLN1 as genes that modulate docetaxel chemosensitivity in triple-negative breast cancer. Clin. Cancer Res. 19, 2061-2070.   DOI
3 Song, S.H., Jeon, M.S., Nam, J.W., Kang, J.K., Lee, Y.J., Kang, J.Y., Kim, H.P., Han, S.W., Kang, G.H., and Kim, T.Y. (2018). Aberrant GATA2 epigenetic dysregulation induces a GATA2/GATA6 switch in human gastric cancer. Oncogene 37, 993-1004.   DOI
4 Ryan, N., Anderson, K., Volpedo, G., Hamza, O., Varikuti, S., Satoskar, A.R., and Oghumu, S. (2020). STAT1 inhibits T-cell exhaustion and myeloid derived suppressor cell accumulation to promote antitumor immune responses in head and neck squamous cell carcinoma. Int. J. Cancer 146, 1717-1729.   DOI
5 Strebhardt, K. (2010). Multifaceted polo-like kinases: drug targets and antitargets for cancer therapy. Nat. Rev. Drug Discov. 9, 643-660.   DOI
6 Sukhov, A., Adamopoulos, I.E., and Maverakis, E. (2016). Interactions of the immune system with skin and bone tissue in psoriatic arthritis: a comprehensive review. Clin. Rev. Allergy Immunol. 51, 87-99.   DOI
7 Takebe, N., Nguyen, D., and Yang, S.X. (2014). Targeting notch signaling pathway in cancer: clinical development advances and challenges. Pharmacol. Ther. 141, 140-149.   DOI
8 Alvarado, A.G., Thiagarajan, P.S., Mulkearns-Hubert, E.E., Silver, D.J., Hale, J.S., Alban, T.J., Turaga, S.M., Jarrar, A., Reizes, O., Longworth, M.S., et al. (2017). Glioblastoma cancer stem cells evade innate immune suppression of self-renewal through reduced TLR4 expression. Cell Stem Cell 20, 450-461.e4.   DOI
9 van 't Veer, L.J., Dai, H., van de Vijver, M.J., He, Y.D., Hart, A.A., Mao, M., Peterse, H.L., van der Kooy, K., Marton, M.J., Witteveen, A.T., et al. (2002). Gene expression profiling predicts clinical outcome of breast cancer. Nature 415, 530-536.   DOI
10 Vidal, S.J., Rodriguez-Bravo, V., Quinn, S.A., Rodriguez-Barrueco, R., Lujambio, A., Williams, E., Sun, X., de la Iglesia-Vicente, J., Lee, A., Readhead, B., et al. (2015). A targetable GATA2-IGF2 axis confers aggressiveness in lethal prostate cancer. Cancer Cell 27, 223-239.   DOI
11 Deng, C.X. (2002). Roles of BRCA1 in centrosome duplication. Oncogene 21, 6222-6227.   DOI
12 Walden, M., Tian, L., Ross, R.L., Sykora, U.M., Byrne, D.P., Hesketh, E.L., Masandi, S.K., Cassel, J., George, R., Ault, J.R., et al. (2019). Metabolic control of BRISC-SHMT2 assembly regulates immune signalling. Nature 570, 194-199.   DOI
13 Angkasekwinai, P. and Dong, C. (2021). IL-9-producing T cells: potential players in allergy and cancer. Nat. Rev. Immunol. 21, 37-48.   DOI
14 Cappello, P., Curcio, C., Mandili, G., Roux, C., Bulfamante, S., and Novelli, F. (2018). Next generation immunotherapy for pancreatic cancer: DNA vaccination is seeking new combo partners. Cancers (Basel) 10, 51.   DOI
15 Clark, E.A., Golub, T.R., Lander, E.S., and Hynes, R.O. (2000). Genomic analysis of metastasis reveals an essential role for RhoC. Nature 406, 532-535.   DOI
16 Cogli, L., Progida, C., Thomas, C.L., Spencer-Dene, B., Donno, C., Schiavo, G., and Bucci, C. (2013). Charcot-Marie-Tooth type 2B disease-causing RAB7A mutant proteins show altered interaction with the neuronal intermediate filament peripherin. Acta Neuropathol. 125, 257-272.   DOI
17 de Pooter, R.F., Schmitt, T.M., de la Pompa, J.L., Fujiwara, Y., Orkin, S.H., and Zuniga-Pflucker, J.C. (2006). Notch signaling requires GATA-2 to inhibit myelopoiesis from embryonic stem cells and primary hemopoietic progenitors. J. Immunol. 176, 5267-5275.   DOI
18 Wang, F., Xia, X., Yang, C., Shen, J., Mai, J., Kim, H.C., Kirui, D., Kang, Y., Fleming, J.B., Koay, E.J., et al. (2018). SMAD4 gene mutation renders pancreatic cancer resistance to radiotherapy through promotion of autophagy. Clin. Cancer Res. 24, 3176-3185.   DOI
19 Zhou, X.Z. and Lu, K.P. (2016). The isomerase PIN1 controls numerous cancer-driving pathways and is a unique drug target. Nat. Rev. Cancer 16, 463-478.   DOI
20 Li, D., Xie, K., Wolff, R., and Abbruzzese, J.L. (2004). Pancreatic cancer. Lancet 363, 1049-1057.   DOI
21 Hahn, C.N., Chong, C.E., Carmichael, C.L., Wilkins, E.J., Brautigan, P.J., Li, X.C., Babic, M., Lin, M., Carmagnac, A., Lee, Y.K., et al. (2011). Heritable GATA2 mutations associated with familial myelodysplastic syndrome and acute myeloid leukemia. Nat. Genet. 43, 1012-1017.   DOI
22 Garcia, A. and Kandel, J.J. (2012). Notch: a key regulator of tumor angiogenesis and metastasis. Histol. Histopathol. 27, 151-156.
23 Di Genua, C., Valletta, S., Buono, M., Stoilova, B., Sweeney, C., Rodriguez-Meira, A., Grover, A., Drissen, R., Meng, Y., Beveridge, R., et al. (2020). C/EBPalpha and GATA-2 mutations induce bilineage acute erythroid leukemia through transformation of a neomorphic neutrophil-erythroid progenitor. Cancer Cell 37, 690-704.e8.   DOI
24 Duan, Q., Li, H., Gao, C., Zhao, H., Wu, S., Wu, H., Wang, C., Shen, Q., and Yin, T. (2019). High glucose promotes pancreatic cancer cells to escape from immune surveillance via AMPK-Bmi1-GATA2-MICA/B pathway. J. Exp. Clin. Cancer Res. 38, 192.   DOI
25 Ducreux, M., Cuhna, A.S., Caramella, C., Hollebecque, A., Burtin, P., Goere, D., Seufferlein, T., Haustermans, K., Van Laethem, J.L., Conroy, T., et al. (2015). Cancer of the pancreas: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 26 Suppl 5, v56-v68.
26 Feng, Q., Wu, X., Li, F., Ning, B., Lu, X., Zhang, Y., Pan, Y., and Guan, W. (2017). miR-27b inhibits gastric cancer metastasis by targeting NR2F2. Protein Cell 8, 114-122.   DOI
27 Fidler, I.J. and Kripke, M.L. (1977). Metastasis results from preexisting variant cells within a malignant tumor. Science 197, 893-895.   DOI
28 Liang, M., Ma, Q., Ding, N., Luo, F., Bai, Y., Kang, F., Gong, X., Dong, R., Dai, J., Dai, Q., et al. (2019). IL-11 is essential in promoting osteolysis in breast cancer bone metastasis via RANKL-independent activation of osteoclastogenesis. Cell Death Dis. 10, 353.   DOI
29 Hawkins, S.M., Loomans, H.A., Wan, Y.W., Ghosh-Choudhury, T., Coffey, D., Xiao, W., Liu, Z., Sangi-Haghpeykar, H., and Anderson, M.L. (2013). Expression and functional pathway analysis of nuclear receptor NR2F2 in ovarian cancer. J. Clin. Endocrinol. Metab. 98, E1152-E1162.   DOI
30 Hennessy, E.J., Parker, A.E., and O'Neill, L.A. (2010). Targeting Toll-like receptors: emerging therapeutics? Nat. Rev. Drug Discov. 9, 293-307.   DOI
31 Liu, C., Shi, J., Li, Q., Li, Z., Lou, C., Zhao, Q., Zhu, Y., Zhan, F., Lian, J., Wang, B., et al. (2019a). STAT1-mediated inhibition of FOXM1 enhances gemcitabine sensitivity in pancreatic cancer. Clin. Sci. (Lond.) 133, 645-663.   DOI
32 Poste, G. and Fidler, I.J. (1980). The pathogenesis of cancer metastasis. Nature 283, 139-146.   DOI
33 Tang, X., Shi, L., Xie, N., Liu, Z., Qian, M., Meng, F., Xu, Q., Zhou, M., Cao, X., Zhu, W.G., et al. (2017). SIRT7 antagonizes TGF-beta signaling and inhibits breast cancer metastasis. Nat. Commun. 8, 318.   DOI
34 Inder, S., O'Rourke, S., McDermott, N., Manecksha, R., Finn, S., Lynch, T., and Marignol, L. (2017). The Notch-3 receptor: a molecular switch to tumorigenesis? Cancer Treat. Rev. 60, 69-76.   DOI
35 Jones, S.A. and Jenkins, B.J. (2018). Recent insights into targeting the IL-6 cytokine family in inflammatory diseases and cancer. Nat. Rev. Immunol. 18, 773-789.   DOI
36 Kang, Y., Siegel, P.M., Shu, W., Drobnjak, M., Kakonen, S.M., Cordon-Cardo, C., Guise, T.A., and Massague, J. (2003). A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 3, 537-549.   DOI
37 Radtke, F., MacDonald, H.R., and Tacchini-Cottier, F. (2013). Regulation of innate and adaptive immunity by Notch. Nat. Rev. Immunol. 13, 427-437.   DOI
38 Ahmed, S., Maratha, A., Butt, A.Q., Shevlin, E., and Miggin, S.M. (2013). TRIF-mediated TLR3 and TLR4 signaling is negatively regulated by ADAM15. J. Immunol. 190, 2217-2228.   DOI
39 Meurette, O. and Mehlen, P. (2018). Notch signaling in the tumor microenvironment. Cancer Cell 34, 536-548.   DOI
40 Rosas-Salvans, M., Scrofani, J., Modol, A., and Vernos, I. (2019). DnaJB6 is a RanGTP-regulated protein required for microtubule organization during mitosis. J. Cell Sci. 132, jcs227033.   DOI
41 Siegel, R.L., Miller, K.D., and Jemal, A. (2019). Cancer statistics, 2019. CA Cancer J. Clin. 69, 7-34.   DOI
42 Spinner, M.A., Sanchez, L.A., Hsu, A.P., Shaw, P.A., Zerbe, C.S., Calvo, K.R., Arthur, D.C., Gu, W., Gould, C.M., Brewer, C.C., et al. (2014). GATA2 deficiency: a protean disorder of hematopoiesis, lymphatics, and immunity. Blood 123, 809-821.   DOI
43 Liu, J., Qu, L., Meng, L., and Shou, C. (2019b). Topoisomerase inhibitors promote cancer cell motility via ROS-mediated activation of JAK2-STAT1-CXCL1 pathway. J. Exp. Clin. Cancer Res. 38, 370.   DOI
44 Karreth, F.A. and Pandolfi, P.P. (2013). ceRNA cross-talk in cancer: when ce-bling rivalries go awry. Cancer Discov. 3, 1113-1121.   DOI
45 Leatherwood, J. (1998). Emerging mechanisms of eukaryotic DNA replication initiation. Curr. Opin. Cell Biol. 10, 742-748.   DOI
46 Lin, J., Hou, K.K., Piwnica-Worms, H., and Shaw, A.S. (2009). The polarity protein Par1b/EMK/MARK2 regulates T cell receptor-induced microtubule-organizing center polarization. J. Immunol. 183, 1215-1221.   DOI
47 Menendez-Gonzalez, J.B., Sinnadurai, S., Gibbs, A., Thomas, L.A., Konstantinou, M., Garcia-Valverde, A., Boyer, M., Wang, Z., Boyd, A.S., Blair, A., et al. (2019). Inhibition of GATA2 restrains cell proliferation and enhances apoptosis and chemotherapy mediated apoptosis in human GATA2 overexpressing AML cells. Sci. Rep. 9, 12212.   DOI
48 Mohan, C.D., Rangappa, S., Preetham, H.D., Chandra Nayaka, S., Gupta, V.K., Basappa, S., Sethi, G., and Rangappa, K.S. (2020). Targeting STAT3 signaling pathway in cancer by agents derived from Mother Nature. Semin. Cancer Biol. 2020 Apr 20 [Epub]. https://doi.org/10.1016/j.semcancer.2020.03.016   DOI
49 Hou, Y., Li, X., Li, Q., Xu, J., Yang, H., Xue, M., Niu, G., Zhuo, S., Mu, K., Wu, G., et al. (2018). STAT1 facilitates oestrogen receptor alpha transcription and stimulates breast cancer cell proliferation. J. Cell. Mol. Med. 22, 6077-6086.   DOI
50 Ramaswamy, S., Ross, K.N., Lander, E.S., and Golub, T.R. (2003). A molecular signature of metastasis in primary solid tumors. Nat. Genet. 33, 49-54.   DOI
51 Robert-Moreno, A., Espinosa, L., de la Pompa, J.L., and Bigas, A. (2005). RBPjkappa-dependent Notch function regulates Gata2 and is essential for the formation of intra-embryonic hematopoietic cells. Development 132, 1117-1126.   DOI
52 Rothenberg, E.V. and Scripture-Adams, D.D. (2008). Competition and collaboration: GATA-3, PU.1, and Notch signaling in early T-cell fate determination. Semin. Immunol. 20, 236-246.   DOI
53 Roy-Luzarraga, M. and Hodivala-Dilke, K. (2016). Molecular pathways: endothelial cell FAK-a target for cancer treatment. Clin. Cancer Res. 22, 3718-3724.   DOI
54 Screpanti, I., Bellavia, D., Campese, A.F., Frati, L., and Gulino, A. (2003). Notch, a unifying target in T-cell acute lymphoblastic leukemia? Trends Mol. Med. 9, 30-35.   DOI