• Title/Summary/Keyword: therapeutic potential

Search Result 2,195, Processing Time 0.038 seconds

Pharmacoacupuncture for the Treatment of Frozen Shoulder: protocol for a systematic review and meta-analysis

  • Ji-Ho Lee;Hyeon-Sun Park;Sang-Hyeon Park;Dong-Ho Keum;Seo-Hyun Park
    • Journal of Pharmacopuncture
    • /
    • v.27 no.1
    • /
    • pp.14-20
    • /
    • 2024
  • Objectives: Frozen shoulder (FS) is one of the most challenging shoulder disorders for patients and clinicians. Its symptoms mainly include any combination of stiffness, nocturnal pain, and limitation of active and passive glenohumeral joint movement. Conventional treatment options for FS are physical therapy, nonsteroidal anti-inflammatory drugs, injection therapy, and arthroscopic capsular release, but adverse and limited effects continue to present problems. As a result, pharmacoacupuncture (PA) is getting attention as an alternative therapy for patients with FS. PA is a new form of acupuncture treatment in traditional Korean medicine (TKM) that is mainly used for musculoskeletal diseases. It has similarity and specificity compared to corticosteroid injection and hydrodilatation, making it a potential alternative injection therapy for FS. However, no systematic reviews investigating the utilization of PA for FS have been published. Therefore, this review aims to standardize the clinical use of PA for FS and validate its therapeutic effect. Methods: The protocol was registered in Prospero (CRD42023445708) on 18 July 2023. Until Aug. 31, 2023, seven electronic databases will be searched for randomized controlled trials of PA for FS. Authors will be contacted, and manual searches will also be performed. Two reviewers will independently screen and collect data from retrieved articles according to predefined criteria. The primary outcome will be pain intensity, and secondary outcomes will be effective rate, Constant-Murley Score, Shoulder Pain and Disability Index, range of motion, quality of life, and adverse events. Bias and quality of the included trials will be assessed using the Cochrane handbook's risk-of-bias tool for randomized trials. Meta analyses will be conducted using Review Manager V.5.3 software. GRADE will be used to evaluate the level of evidence for each outcome. Results: This systematic review and meta-analysis will be conducted following PRISMA statement. The results will be published in a peer-reviewed journal. Conclusion: This review will provide scientific evidence to support health insurance policy as well as the standardization of PA in clinical practice.

Inhibitory effect of ethanol extract of Gryllus bimaculatus on platelet aggregation and glycoprotein IIb/IIIa activation (쌍별귀뚜라미 에탄올 추출물의 혈소판응집반응과 당단백질 IIb/IIIa 활성화 억제 효과)

  • Hyuk-Woo Kwon;Man Hee Rhee;Jung-Hae Shin
    • Journal of Applied Biological Chemistry
    • /
    • v.66
    • /
    • pp.236-243
    • /
    • 2023
  • Platelets act a fundamental role in primary- and secondary-hemostasis, however, platelet activation may cause thrombosis simultaneously. Therefore, control of platelet aggregation is crucial in preventing thrombosis-mediated diseases. Recently, the development of insect materials is attracting attention. Among the highly nutritious functional food sources, insects such as two-spotted cricket (Gryllus bimaculatus). Gryllus bimaculatus (G. bimaculatus) contains high protein and unsaturated fatty acids and has been registered as a food material September 2015 by the Ministry of Food and Drug Safety of Korea. In this study, we examined whether G. bimaculatus extract (GBE) inhibits platelet aggregation, intracellular calcium mobilization, thromboxane A2 production and glycoprotein IIb/IIIa (integrin αIIb/β3) activation. We investigated whether GBE can regulate signaling molecules, such as 1, 4, 5-triphosphate receptor type I, extracellular signal-regulated kinase, cytosolic phospholipase A2, mitogen-activated protein kinases p38, vasodilator-stimulated phosphoprotein, phosphatidylinositol-3 kinase, Akt, glycogen synthase kinase-3α/β, and SYK. Taken together, GBE is a potential therapeutic drug candidate to prevent platelet-related thrombosis and cardiovascular disease.

Anti-thrombotic effect of artemisinin through regulation of cAMP production and Ca2+ mobilization in U46619-induced human platelets (U46619 유도의 사람 혈소판에서 cAMP 생성 및 Ca2+동원의 조절을 통한 Artemisinin의 항혈전 효과)

  • Chang-Eun Park;Dong-Ha Lee
    • Journal of Applied Biological Chemistry
    • /
    • v.66
    • /
    • pp.402-407
    • /
    • 2023
  • The regulation of platelet aggregation is crucial for maintaining normal hemostasis, but abnormal or excessive platelet aggregation can contribute to cardiovascular disorders such as stroke, atherosclerosis, and thrombosis. Therefore, identifying substances that can control or suppress platelet aggregation is a promising approach for the prevention and treatment of these conditions. Artemisinin, a compound derived from Artemisia or Scopolia plants, has shown potential in various areas such as anticancer and Alzheimer's disease research. However, the specific role and mechanisms by which artemisinin influences platelet activation and thrombus formation are not yet fully understood. This study investigated the effects of artemisinin on platelet activation and thrombus formation. As a result, cAMP production were increased significantly by artemisinin, as well as phosphorylated VASP and IP3R which are substrates to cAMP-dependent kinase by artemisinin in a significant manner. The Ca2+ normally mobilized from the dense tubular system was inhibited due to IP3R phosphorylation from artemisinin, and phosphorylated VASP by artemisinin aided in inhibiting platelet activity via αIIb/β3 platelet membrane inactivation and inhibiting fibrinogen binding. Finally, artemisinin inhibited thrombin-induced thrombus formation. Therefore, we suggest that artemisinin has importance with cardiovascular diseases stemming from the abnormal platelets activation and thrombus formation by acting as an effective prophylactic and therapeutic agent.

Antimicrobial Photodynamic Therapy on Pseudomonas aeruginosa Using a Diode Laser and PhotoMed, Methyl Pheophorbide A, or Radachlorin® (다이오드 레이저와 PhotoMed, Methyl Pheophorbide A, Radachlorin®을 이용한 녹농균에 대한 항균 광역학 요법)

  • Young-Kyu SONG;Keun-Dol YOOK;Ji-Won KIM
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.56 no.1
    • /
    • pp.52-58
    • /
    • 2024
  • Photodynamic therapy (PDT) activates intracellular oxygen using a photosensitizer activated by light of a specific wavelength and is a potential means of treating wound infections caused by antibiotic-resistant bacteria. Pseudomonas aeruginosa (P. aeruginosa) is typically non-pathogenic in healthy individuals but can induce severe illnesses like sepsis in the immunocompromised. Antibiotics have been conventionally used to treat P. aeruginosa infections, but increasing antibiotic resistance caused by drug misuse poses a growing challenge to the management of these infections. This study aimed to investigate the ability of PDT using photosensitizers (PhotoMed, Methyl pheophorbide A, or Radachlorin®) and a diode laser to inhibit P. aeruginosa. Suspensions of P. aeruginosa and a photosensitizer were inoculated into Petri dishes and incubated for 30 minutes. Samples were then irradiated with the laser at 3 J/cm2, and after incubation, colony areas were measured. P. aeruginosa killing rates were 79.65% for PhotoMed, 47.36% for Methyl pheophorbide A, and 40.91% for Radachlorin®. This study shows that PDT using a diode laser and a photosensitizer constitutes an effective practical therapeutic approach for inhibiting P. aeruginosa.

Hypoxia-dependent mitochondrial fission regulates endothelial progenitor cell migration, invasion, and tube formation

  • Kim, Da Yeon;Jung, Seok Yun;Kim, Yeon Ju;Kang, Songhwa;Park, Ji Hye;Ji, Seung Taek;Jang, Woong Bi;Lamichane, Shreekrishna;Lamichane, Babita Dahal;Chae, Young Chan;Lee, Dongjun;Chung, Joo Seop;Kwon, Sang-Mo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.22 no.2
    • /
    • pp.203-213
    • /
    • 2018
  • Tumor undergo uncontrolled, excessive proliferation leads to hypoxic microenvironment. To fulfill their demand for nutrient, and oxygen, tumor angiogenesis is required. Endothelial progenitor cells (EPCs) have been known to the main source of angiogenesis because of their potential to differentiation into endothelial cells. Therefore, understanding the mechanism of EPC-mediated angiogenesis in hypoxia is critical for development of cancer therapy. Recently, mitochondrial dynamics has emerged as a critical mechanism for cellular function and differentiation under hypoxic conditions. However, the role of mitochondrial dynamics in hypoxia-induced angiogenesis remains to be elucidated. In this study, we demonstrated that hypoxia-induced mitochondrial fission accelerates EPCs bioactivities. We first investigated the effect of hypoxia on EPC-mediated angiogenesis. Cell migration, invasion, and tube formation was significantly increased under hypoxic conditions; expression of EPC surface markers was unchanged. And mitochondrial fission was induced by hypoxia time-dependent manner. We found that hypoxia-induced mitochondrial fission was triggered by dynamin-related protein Drp1, specifically, phosphorylated DRP1 at Ser637, a suppression marker for mitochondrial fission, was impaired in hypoxia time-dependent manner. To confirm the role of DRP1 in EPC-mediated angiogenesis, we analyzed cell bioactivities using Mdivi-1, a selective DRP1 inhibitor, and DRP1 siRNA. DRP1 silencing or Mdivi-1 treatment dramatically reduced cell migration, invasion, and tube formation in EPCs, but the expression of EPC surface markers was unchanged. In conclusion, we uncovered a novel role of mitochondrial fission in hypoxia-induced angiogenesis. Therefore, we suggest that specific modulation of DRP1-mediated mitochondrial dynamics may be a potential therapeutic strategy in EPC-mediated tumor angiogenesis.

Medicinal Herbal Complex Extract with Potential for Hair Growth-Promoting Activity (발모효과를 가지는 한방복합처방단)

  • Lee, Jun Young;Im, Kyung Ran;Jung, Taek Kyu;Lee, Myoung-Hee;Yoon, Kyung-Sup
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.38 no.4
    • /
    • pp.277-287
    • /
    • 2012
  • To develop new therapeutic materials to prevent hair loss and enhance hair growth, we developed a medicinal herbal complex extract (MHCE) using 23 herbs traditionally used in oriental medicine. Medicinal Herbal complex extract was consist of Angelica gigas Nakai, Psoralea corylifolia Linne, Biota orientalis Endlicher, and Eclipta prostrata Linne, Rehmannia glutinosa Liboschitz var. purpurea Makino, Ligustrum lucidum Aiton, Polygonum multiflorum Thunberg, and Sesamum indicum Linne, Sophora angustifolia Sieboldet Zuccarini, Angelica dahurica Benthamet Hooker, and Leonurus sibiricus Linne, Salvia miltiorrhiza Bunge, Prunus persica Batsch, Commiphora molmol Engler, Chrysanthemum indicum Linne, Boswellia carterii Birdwood, Panax ginseng C. A. Meyer, Cnidium officinale Makino, Albizia julibrissin Durazzini, and Corydalis ternata Nakai that have traditionally been used for treating hair loss, preventing gray hair, anti-inflammation, and blood circulation in oriental medicine. In addition, we examined the hair growth effect of MHCE in vitro and in vivo. In vitro, we evaluated the effects of MHCE on cultured HFDPC, HaCaT cells, and murine embryonal fibroblasts (NIH3T3 cells). Also, we evaluated the ability of MHCE to prevent gray hair on murine melanoma cells (B16F1 cells). The hair growth-promoting effect of MHCE in vitro was also observed in vivo using C57BL/6 mice. Our results showed that MHCE significantly increased the proliferation of HFDPC (175 % proliferation at $50{\mu}g/mL$), HaCaT cells (133 % proliferation at $20{\mu}g/mL$), and NIH3T3 cells (120 % proliferation at $50{\mu}g/mL$). MHCE also showed consistent melanogenesis in B16F1 cells (154 % melanin synthesis at $50{\mu}g/mL$). Moreover, MHCE showed potential for hair growth stimulation in C57BL/6 mice experiments (98 % hair growth area on 4 weeks). These results indicate that MHCE may be a good candidate for promotion of hair growth.

The Synthesis of the Stable IVDU Derivative for Imaging HSV-1 TK Expression (체내 안정형 HSV1-tk (Herpes Simplex Virus Type-1 Thymidine Kinase) 영상용 IVDU 유도체의 합성)

  • Kim, Eun-Jung;Choi, Tae-Hyun;Ahn, Soon-Hyuk;Kim, Byoung-Soo;Park, Hyun;Cheon, Gi-Jeong;Rhee, Hak-June;An, Gwang-Il
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.43 no.5
    • /
    • pp.478-486
    • /
    • 2009
  • Purpose: 5-iododeoxyuridine analogues have been exclusively developed for the potential antiviral and antitumor therapeutic agents. In this study, we synthesized carbocyclic radioiododeoxyuridineanalogue (ddIVDU) and carbocyclic intermediate as efficient carbocyclic radiopharmaceuticals. Materials and Methods: The synthesis is LAH reduction, hetero Diels-Alder reaction as key reactions including Pd(0)-catalyzed coupling reaction together with organotin. MCA-RH7777 (MCA) and MCA-tk (HSV1-tk positive) cells were treated with various concentration of carbocyclic ddIVDU, and GCV. Cytotoxicity was measured by the MTS methods. For in vitro uptake study, MCA and MCA-tk cells were incubated with 1uCi of [$^{125}I$]carbocyclic ddIVDU. Accumulated radioactivity was measured after various incubation times. Results: The synthesis of ddIVDU and precursor for radioiodination were achieved from cyclopentadiene in good overall yield, respectively. The radioiododemetallation for radiolabeling gave more than 80% yield with > 95% radiochemical purity. GCV was more toxic than carbocyclic ddIVDU in MCA-tk cells. Accumulation of [$^{125}I$]carbocyclic ddIVDU was higher in MCA-tk cells than MCA cells. Conclusion: Biological data reveal that ddIVDU is stable in vitro, less toxic than ganciclovir (GCV), and selective in HSV1-tk expressed cells. Thus, this new carbocyclic nucleoside, referred to in this paper as carbocyclic 2',3'-didehydro-2',3'-dideoxy-5- iodovinyluridine (carbocyclic ddIVDU), is a potential imaging probe for HSV1-tk.

Potential Reproductive Toxicity Study of p53 Expressing Adenoviral Vector in Mice (아데노바이러스 유전자치료벡터의 생식독성 연구)

  • Rhee, Gyu-Seek;Kwack, Seung-Jun;Kim, Soon-Sun;Lee, Rhee-Da;Seok, Ji-Hyun;Chae, Soo-Young;Chung, Soo-Youn;Kim, Seung-Hee;Lee, Seung-Hoon;Park, Kui-Lea
    • Korean Journal of Microbiology
    • /
    • v.43 no.3
    • /
    • pp.151-158
    • /
    • 2007
  • The possibility of inadvertent introduction of therapeutic gene expressing viral vectors has raised safety concerns about germ-line infection. Particularly, for indications such as prostate cancer and ovarian cancer, the proximity of the point of viral administration to organs of the reproductive system raises concerns regarding inadvertent germ-line transmission of genes carried by the virus vector. To evaluate the safety of in vivo adenovirus mediated gene transfer, we explored the biodistribution, persistance and potential germ-line transmission of p53-expressing adenovirus (Ad-CMV-p53). Both male and female Balb/c mice were injected with $1{\times}10^9$ PFU of Ad-CMV-p53. The PCR analysis showed that there were detectable vector sequences in liver, kidney, spleen, seminal vesicle, epididymis, prostate, ovary, and uterus. The RT-PCR analysis for detecting inserted gene, p53 showed that Ad-CMV-p53 viral RNA were present in spleen, prostate and ovary. Direct injected male and female mice of adenovirus vector into testis and ovary were mated and their of offspring were evaluated for germ-line transmission of the adenoviral vector. The PCR and RT-PCR analysis showed no evidence of germline transmission, although vector sequences were detected in DNA extracted from gonadal tissues. Real-time PCR result confirmed a significant decrease of adenovirus in gonad tissues 1 week after injection. We have also analysed the cell specific localization of viral DNA in gonad tissues by using in-situ PCR. Positive signals were detected in interstitial tissue but not in seminiferous tubule in sperm. In the case of ovary, adenovirus signal were localized to the stromal tissue, but no follicular signals were observed. Together, these data provide strong evidence that the risk of the Inadvertent germ-line transmission of vector sequences following intraperitoneal or direct injection into genito-urinary system of adenovirus is extremely low.

The Anti-angiogenic Potential of a Phellodendron amurense Hot Water Extract in Vitro and ex Vivo (in Vitro와 ex vivo에서 황백 온수추출물의 신생혈관 억제효과)

  • Kim, Eok-Cheon;Kim, Seo Ho;Bae, Kiho;Kim, Han Sung;Gelinsky, Michael;Kim, Tack-Joong
    • Journal of Life Science
    • /
    • v.25 no.6
    • /
    • pp.693-702
    • /
    • 2015
  • Blocking new blood-vessel formation (angiogenesis) is now recognized as a useful approach to the therapeutic treatment of many solid tumors. The best validated approach to date is to target the vascular endothelial growth-factor (VEGF) pathway, a key regulator of angiogenesis. Many natural products and extracts that contain a variety of chemopreventive compounds have been shown to suppress the development of malignancies through their anti-angiogenic properties. Phellodendron amurense, which is widely used in Korean traditional medicine, has been shown to possess antitumor, antimicrobial, and anti-inflammatory properties, among others. The present study investigated the effects of P. amurense hot-water extract (PAHWE) on angiogenesis, a key process in tumor growth, invasion, and metastasis. To investigate PAHWE’s anti-angiogenic properties, this study’s authors performed an analysis of angiogenesis and endothelial-cell proliferation, migration, invasion, and tube formation, as well as zymogram assays and the rat aortic ring-sprouting assay. PAHWE inhibited cell growth, mobility, and vessel formation in response to VEGF in vitro and ex vivo. Furthermore, it reduced VEGF-induced intracellular signaling events, such as the activation of matrix metalloproteinases (MMPs) -2 and -9. These results indicate that PAHWE’s anti-angiogenic properties might lead to the development of potential drugs for treating angiogenesis-associated diseases such as cancer.

Sargassum sp. Attenuates Oxidative Stress and Suppresses Lipid Accumulation in vitro (모자반추출물의 항산화활성 및 지방세포 생성억제 효과)

  • Kim, Jung-Ae;Karadeniz, Fatih;Ahn, Byul-Nim;Kwon, Myeong Sook;Mun, Ok-Ju;Kim, Mihyang;Lee, Sang-Hyeon;Yu, Ki Hwan;Kim, Yuck Yong;Kong, Chang-Suk
    • Journal of Life Science
    • /
    • v.24 no.3
    • /
    • pp.274-283
    • /
    • 2014
  • Oxidative stress causes tissue damage and facilitates the progression of metabolic diseases, including diabetes, cardiovascular heart diseases, and obesity. Lipid accumulation and obesity-related complications have been observed in the presence of extensive oxidative stress. As part of an ongoing study to develop therapeutic supplements, Sargassum sp. were tested for their ability to scavenge free radicals and intracellular reactive oxygen species (ROS), as well as to suppress lipid accumulation. Three species, S. hemiphyllum, S. thunbergii, and Sargassum horneri, were shown to scavenge free radicals in a di(phenyl)-(2,4,6-trinitrophenyl)iminoazanium (DPPH) assay. In addition, Sargassum sp. was shown to scavenge intracellular ROS and to decrease nitric oxide (NO) production in $H_2O_2$ and lipopolysaccharide (LPS)-induced in RAW264.7 mouse macrophages, respectively. Taken together, the results suggest that Sargassum sp. possess huge potential to relieve oxidative stress and related complications, as well as lipid-induced oxidation. They indicate that S. hemiphyllum, S. thunbergii, and S. horneri are potent functional supplements that can produce beneficial health effects through antioxidant and antiobesity activities, with S. hemiphyllum being the most potent among the Sargassum sp. tested. A potential mechanism for the effect of Sargassum sp. on the suppression of lipid accumulation in differentiating 3T3-L1 mouse preadipocytes through deactivation of the peroxisome proliferator-activated receptor ${\gamma}$ (PPAR ${\gamma}$) is presented.