• Title/Summary/Keyword: therapeutic agents

Search Result 799, Processing Time 0.025 seconds

Antiviral Activity of Fritillaria thunbergii Extract against Human Influenza Virus H1N1 (PR8) In Vitro, In Ovo and In Vivo

  • Kim, Minjee;Nguyen, Dinh-Van;Heo, Yoonki;Park, Ki Hoon;Paik, Hyun-Dong;Kim, Young Bong
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.2
    • /
    • pp.172-177
    • /
    • 2020
  • Influenza viruses cause respiratory diseases in humans and animals with high morbidity and mortality rates. Conventional anti-influenza drugs are reported to exert side effects and newly emerging viral strains tend to develop resistance to these commonly used agents. Fritillaria thunbergii (FT) is traditionally used as an expectorant for controlling airway inflammatory disorders. Here, we evaluated the therapeutic effects of FT extracts against influenza virus type A (H1N1) infection in vitro, in ovo, and in vivo. In the post-treatment assay, FT extracts showed high CC50 (7,500 ㎍/ml), indicating low toxicity, and exerted moderate antiviral effects compared to oseltamivir (SI 50.6 vs. 222) in vitro. Antiviral activity tests in ovo revealed strong inhibitory effects of both FT extract and oseltamivir against H1N1 replication in embryonated eggs. Notably, at a treatment concentration of 150 mg/kg, only half the group administered oseltamivir survived whereas the FT group showed 100% survival, clearly demonstrating the low toxicity of FT extracts. Consistent with these findings, FT-administered mice showed a higher survival rate with lower body weight reduction relative to the oseltamivir group upon treatment 24 h after viral infection. Our collective results suggest that FT extracts exert antiviral effects against influenza H1N1 virus without inducing toxicity in vitro, in ovo or in vivo, thereby supporting the potential utility of FT extract as a novel candidate therapeutic drug or supplement against influenza.

Rapid Establishment of CHO Cell Lines Producing the Anti-Hepatocyte Growth Factor Antibody SFN68

  • Song, Seong-Won;Lee, Song-Jae;Kim, Chang-Young;Han, Byungryeul;Oh, Jong-Won
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.8
    • /
    • pp.1176-1184
    • /
    • 2013
  • Anti-hepatocyte growth factor (anti-HGF) monoclonal antibodies (mAbs) are potential therapeutics against various cancers. Screening for high-producer clones is a time-consuming and complex process and is a major hurdle in the development of therapeutic mAbs. Here, we describe an efficient approach that allows the selection of high-producer Chinese hamster ovary (CHO) cell lines producing the novel anti-HGF mAb SFN68, which was generated previously by immunizing HGF bound to its receptor c-Met. We selected an SFN68-producing parental cell line via transfection of the dihydrofolate reductase-deficient CHO cell line DG44, which was preadapted to serum-free suspension culture, with an SFN68-expression vector. Subsequent gene amplification via multiple passages of the parental cell line in a methotrexate-containing medium over 4 weeks, followed by clonal isolation, enabled us to isolate two cell lines, 2F7 and 2H4, with 3-fold higher specific productivity. We also screened 72 different media formulated with diverse feed and basal media to develop a suboptimized medium. In the established suboptimized medium, the highest anti-HGF mAb yields of the 2F7 and 2H4 clones were 842 and 861 mg/l, respectively, which were about 10.5-fold higher than that of the parental cell line in a non-optimized basal medium. The selected CHO cell lines secreting high titers of SFN68 would be useful for the production of sufficient amounts of antibodies for efficacy evaluation in preclinical and early clinical studies.

Current Status of Gene Therapy as a New Drug Delivery System (신약전달기술체계인 유전자 치료의 현재까지의 개발동향)

  • Bae, Yun-Sung;Cho, Jung-Yoon;Ji, Sang-Mi;Lee, Young-Joo
    • Journal of Pharmaceutical Investigation
    • /
    • v.32 no.3
    • /
    • pp.153-159
    • /
    • 2002
  • Gene therapy is fundamentally a sophisticated drug delivery technology to cure a disease by the transfer of genetic material to modify living cells. In other words, the gene is used as a therapeutic drug much like a chemical compound is employed in chemotherapy. Currently almost 600 clinical trials are underway worldwide since the first clinical trials carried out in 1990 to treat adenosine deaminase deficiency using retroviral vectors. Despite the great progress still is there no gene therapy product being approved as a new drug. This is partly due to a lack of an ideal gene delivery system that is safe and can provide stable, optimal level production of the therapeutic proteins in the cell. This review covers the current status of several different biological and physico-chemical agents that are being developed as gene delivery vehicles. Although gene therapy promises great hopes toward the cure of a broad spectrum of genetic and acquired diseases, the success of gene therapy heavily asks for the development of vector systems for safe and efficient application in humans.

Dendrosomal Curcumin Inhibits Metastatic Potential of Human SW480 Colon Cancer Cells through Down-regulation of Claudin1, Zeb1 and Hef1-1 Gene Expression

  • Esmatabadi, Mohammad Javad Dehghan;Farhangi, Baharak;Safari, Zahra;Kazerooni, Hanif;Shirzad, Hadi;Zolghadr, Fatemeh;Sadeghizadeh, Majid
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.6
    • /
    • pp.2473-2481
    • /
    • 2015
  • Colon cancer is one of the leading causes of cancer-associated death worldwide. The prognosis for advanced colorectal cancers remains dismal, mainly due to the propensity for metastatic progression. Accordingly, there is a need for effective anti-metastasis therapeutic agents. Since a great body of research has indicated anticancer effects for curcumin, we investigated the effects of dendrosomal curcumin (DNC) on cellular migration and adhesion of human SW480 cells and possible molecular mechanisms involved. Different methods were applied in this study including MTT, Scratch and adhesion assays as well as real-time PCR and transwell chamber assays. Based on the results obtained, DNC inhibits metastasis by decreasing Hef 1, Zeb 1 and Claudin 1 mRNA levels and can reduce SW480 cell proliferation with $IC_{50}$values of 15.9, 11.6 and $7.64{\mu}M$ at 24, 48 and 72h post-treatment. Thus it might be considered as a safe formulation for therapeutic purpose in colorectal cancer cases.

Current Status and Future Strategies to Treat Spinal Cord Injury with Adult Stem Cells

  • Jeong, Seong Kyun;Choi, Il;Jeon, Sang Ryong
    • Journal of Korean Neurosurgical Society
    • /
    • v.63 no.2
    • /
    • pp.153-162
    • /
    • 2020
  • Spinal cord injury (SCI) is one of the most devastating conditions and many SCI patients suffer neurological sequelae. Stem cell therapies are expected to be beneficial for many patients with central nervous system injuries, including SCI. Adult stem cells (ASCs) are not associated with the risks which embryonic stem cells have such as malignant transformation, or ethical problems, and can be obtained relatively easily. Consequently, many researchers are currently studying the effects of ASCs in clinical trials. The environment of transplanted cells applied in the injured spinal cord differs between the phases of SCI; therefore, many researchers have investigated these phases to determine the optimal time window for stem cell therapy in animals. In addition, the results of clinical trials should be evaluated according to the phase in which stem cells are transplanted. In general, the subacute phase is considered to be optimal for stem cell transplantation. Among various candidates of transplantable ASCs, mesenchymal stem cells (MSCs) are most widely studied due to their clinical safety. MSCs are also less immunogenic than neural stem/progenitor cells and consequently immunosuppressants are rarely required. Attempts have been made to enhance the effects of stem cells using scaffolds, trophic factors, cytokines, and other drugs in animal and/or human clinical studies. Over the past decade, several clinical trials have suggested that transplantation of MSCs into the injured spinal cord elicits therapeutic effects on SCI and is safe; however, the clinical effects are limited at present. Therefore, new therapeutic agents, such as genetically enhanced stem cells which effectively secrete neurotrophic factors or cytokines, must be developed based on the safety of pure MSCs.

Combination Therapy for Gliomas Using Temozolomide and Interferon-Beta Secreting Human Bone Marrow Derived Mesenchymal Stem Cells

  • Park, Jae-Hyun;Ryu, Chung Heon;Kim, Mi Jin;Jeun, Sin-Soo
    • Journal of Korean Neurosurgical Society
    • /
    • v.57 no.5
    • /
    • pp.323-328
    • /
    • 2015
  • Objective : Malignant gliomas are the most common primary tumors of the central nervous system and the prognosis of patients with gliomas is poor. The combination of interferon-bata (IFN-${\beta}$) and temozolomide (TMZ) has shown significant additive antitumor effects in human glioma xenograft models. Considering that the poor survival of patients with human malignant gliomas relates partly to the inability to deliver therapeutic agents to the tumor, the tropism of human bone marrow-derived mesenchymal stem cells (MSC) for malignant gliomas can be exploited to therapeutic advantages. We investigated the combination effects of TMZ and MSCs that secrete IFN-${\beta}$ on gliomas. Methods : We engineered human MSCs to secret mouse IFN-${\beta}$ (MSC-IFN-${\beta}$) via adenoviral transduction and confirmed their secretory capacity using enzyme-linked immunosorbent assays. In vitro and in vivo experiments were performed to determine the effects of the combined TMZ and MSC-IFN-${\beta}$ treatment. Results : In vitro, the combination of MSC-IFN-${\beta}$ and TMZ showed significantly enhanced antitumor effects in GL26 mouse glioma cells. In vivo, the combined MSC-IFN-${\beta}$ and TMZ therapy significantly reduced the tumor size and improved the survival rates compared to each treatment alone. Conclusion : These results suggest that MSCs can be used as an effective delivery vehicle so that the combination of MSC-IFN-${\beta}$ and TMZ could be considered as a new option for the treatment of malignant gliomas.

EFFECT OF TOPICAL STEROID THERAPY ON RECURRENT APHTHOUS STOMATITIS (재발성 아프타성 구내염에 대한 국소 스테로이드 요법의 효과)

  • 최종욱;정광윤;박정수;김영호;유홍균
    • Korean Journal of Bronchoesophagology
    • /
    • v.2 no.2
    • /
    • pp.227-231
    • /
    • 1996
  • Recurrent aphthous stomatitis is one of the most common diseases of ulcerative oral mucosal lesions and its cause remains elusive. The purpose of this study is to evaluate the therapeutic effect of topical steroids for the treatment of recurrent aphthous stomatitis. We performed the study with 50 cases who had visited to our office for the treatment of recurrent aphthous stomatitis during the recent five years. We devided 50 cases into five groups. Group 1 is that triamcinolone of 0.1-0.2mg was injected into the submucosal lesions of ulcerations. Group 2 is that the gargling of 5ml with triamcinolone tablet of 2mg was used three times per day for seven days. Group 3 is that the gargling of 5ml with betamethasone tablet 0.5mg was used three times per day for seven days. Group 4 is that tetracycline gargling was used six times per day for seven days. Group 5 is that normal saline gargling was used six times per day for seven days. The retrospective analysis of results were as follows : Betamethasone gargling was effective in the treatment of minor aphthous stomatitis and the submucosal injection of triamcinolone was effective in the treatment of major aphthous stomatitis, but none of the different therapeutic methods was effective for herpetiform stomatitis. In the evaluation of mean recurrence periods, the triamcinolone gargling and betamethasone gargling showed longer asymptomatic periods than other methods. We concluded that some kinds of topical steroids can be used for the treatment of recurrent aphthous stomatitis but the proper selection of agents according to the type of the disease is important for the treatment.

  • PDF

Changes in Gene Expression in the Rat Hippocampus after Focal Cerebral Ischemia

  • Chung, Jun-Young;Yi, Jae-Woo;Kim, Sung-Min;Lim, Young-Jin;Chung, Joo-Ho;Jo, Dae-Jean
    • Journal of Korean Neurosurgical Society
    • /
    • v.50 no.3
    • /
    • pp.173-178
    • /
    • 2011
  • Objective : The rat middle cerebral artery thread-occlusion model has been widely used to investigate the pathophysiological mechanisms of stroke and to develop therapeutic treatment. This study was conducted to analyze energy metabolism, apoptotic signal pathways, and genetic changes in the hippocampus of the ischemic rat brain. Methods : Focal transient cerebral ischemia was induced by obstructing the middle cerebral artery for two hours. After 24 hours, the induction of ischemia was confirmed by the measurement of infarct size using 2,3,5-triphenyltetrazolium chloride staining. A cDNA microarray assay was performed after isolating the hippocampus, and was used to examine changes in genetic expression patterns. Results : According to the cDNA microarray analysis, a total of 1,882 and 2,237 genes showed more than a 2-fold increase and more than a 2-fold decrease, respectively. When the genes were classified according to signal pathways, genes related with oxidative phosphorylation were found most frequently. There are several apoptotic genes that are known to be expressed during ischemic brain damage, including Akt2 and Tnfrsf1a. In this study, the expression of these genes was observed to increase by more than 2-fold. As energy metabolism related genes grew, ischemic brain damage was affected, and the expression of important genes related to apoptosis was increased/decreased.Conclusion : Our analysis revealed a significant change in the expression of energy metabolism related genes (Atp6v0d1, Atp5g2, etc.) in the hippocampus of the ischemic rat brain. Based on this data, we feel these genes have the potential to be target genes used for the development of therapeutic agents for ischemic stroke.

Towards the Application of Human Defensins as Antivirals

  • Park, Mee Sook;Kim, Jin Il;Lee, Ilseob;Park, Sehee;Bae, Joon-Yong;Park, Man-Seong
    • Biomolecules & Therapeutics
    • /
    • v.26 no.3
    • /
    • pp.242-254
    • /
    • 2018
  • Defensins are antimicrobial peptides that participate in the innate immunity of hosts. Humans constitutively and/or inducibly express ${\alpha}$- and ${\beta}$-defensins, which are known for their antiviral and antibacterial activities. This review describes the application of human defensins. We discuss the extant experimental results, limited though they are, to consider the potential applicability of human defensins as antiviral agents. Given their antiviral effects, we propose that basic research be conducted on human defensins that focuses on RNA viruses, such as human immunodeficiency virus (HIV), influenza A virus (IAV), respiratory syncytial virus (RSV), and dengue virus (DENV), which are considered serious human pathogens but have posed huge challenges for vaccine development for different reasons. Concerning the prophylactic and therapeutic applications of defensins, we then discuss the applicability of human defensins as antivirals that has been demonstrated in reports using animal models. Finally, we discuss the potential adjuvant-like activity of human defensins and propose an exploration of the 'defensin vaccine' concept to prime the body with a controlled supply of human defensins. In sum, we suggest a conceptual framework to achieve the practical application of human defensins to combat viral infections.

PET-Based Molecular Nuclear Neuro-Imaging

  • Kim, Jong-Ho
    • The Korean Journal of Nuclear Medicine
    • /
    • v.38 no.2
    • /
    • pp.161-170
    • /
    • 2004
  • Molecular Nuclear Neuro-Imaging in "CNS" drug discovery and development tan be divided into four categories that are clearly inter-related.(1) Neuroreceptor mapping to examine the involvement of specific neurotransmitter system in CNS diseases, drug occupancy characteristics and perhaps examine mechanisms of action;(2) Structural and spectroscopic imaging to examine morphological changes and their consequences;(3) Metabolic mapping to provide evidence of central activity and "CNS fingerprinting" the neuroanatomy of drug effects;(4) Functional mapping to examing disease-drug interactions. In addition, targeted delivery of therapeutic agents could be achieved by modifying stem cells to release specific drugs at the site of transplantation('stem cell pharmacology'). Future exploitation of stem cell biology, including enhanced release of therapeutic factors through genetic stem cell engineering, might thus constitute promising pharmaceutical approaches to treating diseases of the nervous system. With continued improvements in instrumentation, identification of better imaging probes by innovative chemistry, molecular nuclear neuro-imaging promise to play increasingly important roles in disease diagnosis and therapy.