• Title/Summary/Keyword: theoretical modeling

Search Result 1,112, Processing Time 0.026 seconds

Numerical Analysis for Modeling of Sound Absorbing Medium using Transmission Line Matrix Modeling (전달선로행렬법을 이용한 흡음재 모델링에 대한 수치해석)

  • Park, Kyu-Chil;Yoon, Jong-Rak
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.8
    • /
    • pp.1599-1605
    • /
    • 2012
  • We introduced an approach of modeling of a sound absorbing medium that had different absorbing coefficient according to frequency. To obtain the time domain result of the frequency characteristics of a sound absorbing medium, transmission line matrix modeling was used. To input sound absorbing effect in TLM modeling, we added a FIR filter at a node instead of absorbing component using resistance component. There were simulated the characteristics of time-shift, low pass filter, high pass filter using the FIR filter with 7-tap coefficients, then compared with theoretical results. From various simulation results, we could find that added FIR filter coefficient in TLM modeling was an useful way to model a sound absorbing medium.

Manifestation examples of group creativity in mathematical modeling (수학적 모델링에서 집단창의성 발현사례)

  • Jung, Hye Yun;Lee, Kyeong Hwa
    • The Mathematical Education
    • /
    • v.57 no.4
    • /
    • pp.371-391
    • /
    • 2018
  • The purpose of this study is to analyze manifestation examples and effects of group creativity in mathematical modeling and to discuss teaching and learning methods for group creativity. The following two points were examined from the theoretical background. First, we examined the possibility of group activity in mathematical modeling. Second, we examined the meaning and characteristics of group creativity. Six students in the second grade of high school participated in this study in two groups of three each. Mathematical modeling task was "What are your own strategies to prevent or cope with blackouts?". Unit of analysis was the observed types of interaction at each stage of mathematical modeling. Especially, it was confirmed that group creativity can be developed through repetitive occurrences of mutually complementary, conflict-based, metacognitive interactions. The conclusion is as follows. First, examples of mutually complementary interaction, conflict-based interaction, and metacognitive interaction were observed in the real-world inquiry and the factor-finding stage, the simplification stage, and the mathematical model derivation stage, respectively. And the positive effect of group creativity on mathematical modeling were confirmed. Second, example of non interaction was observed, and it was confirmed that there were limitations on students' interaction object and interaction participation, and teacher's failure on appropriate intervention. Third, as teaching learning methods for group creativity, we proposed students' role play and teachers' questioning in the direction of promoting interaction.

Customer satisfaction and competitiveness in Global Company: Structural Equation Modeling(SEM) approach to identify the role quality factor (글로벌 기업의 고객만족과 경쟁력 모델 구축: 품질요인확인을 위한 구조방정식모델 적용)

  • Kim, Gye Soo;Park, Jong Cheol
    • Journal of Korean Society for Quality Management
    • /
    • v.43 no.1
    • /
    • pp.43-56
    • /
    • 2015
  • Purpose: In this research, We made the conceptual frameworks for SEM(Structural Equation Modeling) on Global quality's origin and empirical research. Developing conceptual frameworks is an important step in theory building and theory testing. This research model was developed by strong theoretical foundation which is quality and systematical model. Methods: Questionnaire was developed, and data was collected and analyzed for this study. The analysis was conducted using SEM(Structural Equation Modeling). Results: Results show that process quality and interaction quality are important drivers in customer satisfaction. Customer satisfaction is strongly impact on customer loyalty(repeated purchase). Conclusion: In turbulent business era, Global company require not only excellent quality but also create customer oriented culture and control over operation in the foreign country.

Modeling and Analysis of Active-Clamp, Full-Bridge Boost Converter (능동 클램프 풀브릿지 부스트 컨버터에 대한 모델링 및 분석)

  • Kim Marn-Go
    • Proceedings of the KIPE Conference
    • /
    • 2004.07b
    • /
    • pp.610-614
    • /
    • 2004
  • Recently, an active-clamp, full-bridge boost converter has been actively studied for high-power applications such as power factor correction and battery discharger. However, DC and AC modeling for this converter has not conquered. In this paper, a DC and small-signal AC modeling for the active-clamp, full-bridge boost converter is described. Based on the operation principle, the ac part of the converter can be replaced by a do counterpart. Then, a conceptual equivalent circuit is derived by rearranging the switches. The equivalent circuit for this converter consists of CCM (Continuous conduction mode) boost and DCM (Discontinuous conduction mode) buck converter. The analyses for the equivalent CCM boost and DCM buck converter are done using the model of PWM switch. The theoretical modeling results are confirmed through experiment or SIMPLIS simulation.

  • PDF

Nanofibers from electrically driven viscoelastic jets: modeling and experiments

  • Carroll, Colman P.;Zhmayev, Eduard;Kalra, Vibha;Joo, Yong-Lak
    • Korea-Australia Rheology Journal
    • /
    • v.20 no.3
    • /
    • pp.153-164
    • /
    • 2008
  • Modeling and experiments of three electrospinning systems have been presented and they are i) axisymmetric instabilities in electrospinning of various polymeric solutions, ii) non-isothermal modeling of polymer melt electrospinning, and iii) control of nanoparticle distribution and location via confined self-assembly of block copolymers during electrospinning. It has been demonstrated that predicted simulations are in good agreement with corresponding electro spinning experiments, and theoretical analysis provides fundamental understanding of phenomena that take place during electrospinning of various polymeric liquids.

Acoustic performance of industrial mufflers with CAE modeling and simulation

  • Jeon, Soohong;Kim, Daehwan;Hong, Chinsuk;Jeong, Weuibong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.4
    • /
    • pp.935-946
    • /
    • 2014
  • This paper investigates the noise transmission performance of industrial mufflers widely used in ships based on the CAE modeling and simulation. Since the industrial mufflers have very complicated internal structures, the conventional Transfer Matrix Method (TMM) is of limited use. The CAE modeling and simulation is therefore required to incorporate commercial softwares: CATIA for geometry modeling, MSC/PATRAN for FE meshing and LMS/SYSNOISE for analysis. Main sources of difficulties in this study are led by complicated arrangement of reactive elements, perforated walls and absorption materials. The reactive elements and absorbent materials are modeled by applying boundary conditions given by impedance. The perforated walls are modeled by applying the transfer impedance on the duplicated node mesh. The CAE approach presented in this paper is verified by comparing with the theoretical solution of a concentric-tube resonator and is applied for industrial mufflers.

Certified Missile Rounds Concepts Using Modeling and Simulation (M&S를 활용한 유도탄 검사주기 및 수량 설정 방안)

  • Kim, Byung-Soo;Lee, Kye-Shin;Kim, Dong-Seok;Moon, Ki-Sung
    • Journal of the Korea Society for Simulation
    • /
    • v.18 no.4
    • /
    • pp.95-105
    • /
    • 2009
  • In this study, we presented the periodic inspection method of the Certified Missile Round Concepts usuing M&S(Modeling and Simulation) techniques. Firstly, We drew up the scenario from the application concepts and the predicted dormant reliability Secondly, we performed the modeling for a simulation program based on the scenario. Lastly we embodied the simulation program. After comparing and examining the difference between the simulation results and the theoretical estimates, we present the best periodic inspection plan for achieving the probability of success.

Modeling and Theoretical Analysis of Thermodynamic Characteristic of Nano Vibration Absorber (나노 진동 흡수기의 모델링 및 열역학적 특성 해석에 대한 이론적 연구)

  • 문병영;정성원
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.6
    • /
    • pp.93-99
    • /
    • 2003
  • In this study, new shock absorbing system is proposed by using nano-technology based on the theoretical analysis. The new shock absorbing system is complementary to the hydraulic damper, having a cylinder-piston-orifice construction. Particularly for new shock absorbing system, the hydraulic oil is replaced by a colloidal suspension, which is composed of a porous matrix and a lyophobic fluid. The matrix of the suspension is consisted of porous micro-grains with a special architecture: they present nano-pores serially connected to micro-cavities. Until now, only experimentally qualitative studies of new shock absorbing system have been performed, but the mechanism of energy dissipation has not been clarified. This paper presents a modeling and theoretical analysis of the new shock absorbing system thermodynamics, nono-flows and energy dissipation. Compared with hydraulic system, the new shock absorbing system behaves more efficiently, which absorb a large amount of mechanical energy, without heating. The theoretical computations agree reasonably well with the experimental results. As a result. the proposed new shock absorbing system was proved to be an effective one, which can replace with the conventional one.

Roles of Models in Abductive Reasoning: A Schematization through Theoretical and Empirical Studies (귀추적 사고 과정에서 모델의 역할 -이론과 경험 연구를 통한 도식화-)

  • Oh, Phil Seok
    • Journal of The Korean Association For Science Education
    • /
    • v.36 no.4
    • /
    • pp.551-561
    • /
    • 2016
  • The purpose of this study is to investigate both theoretically and empirically the roles of models in abductive reasoning for scientific problem solving. The context of the study is design-based research the goal of which is to develop inquiry learning programs in the domain of earth science, and the current article dealt with an early process of redesigning an abductive inquiry activity in geology. In the theoretical study, an extensive review was conducted with the literature addressing abduction and modeling together as research methods characterizing earth science. The result led to a tentative scheme for modeling-based abductive inference, which represented relationships among evidence, resource models, and explanatory models. This scheme was improved by the empirical study in which experts' reasoning for solving a geological problem was analyzed. The new scheme included the roles of critical evidence, critical resource models, and a scientifically sound explanatory model. Pedagogical implications for the support of student reasoning in modeling-based abductive inquiry in earth science was discussed.

Study on the Thermal and Dynamic Behaviors of Air Spring for vibration isolation of LCD panel inspecting machine connected with an External Chamber through a flexible tube: PART I, Theoretical Modeling (외부챔버와 유연한 튜브로 연결된 LCD 패널 검사기 방진용 공기 스프링의 열 및 동적 연성거동에 대한 연구: PART I, 이론적 모델링)

  • Seok, Jong-Won;Lee, Ju-Hong;Kim, Pil-Kee
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.1
    • /
    • pp.33-41
    • /
    • 2011
  • Due to the recent quantum leaps forward in bio-, nano-, and information-technologies (BT, NT and IT), the precisionization and miniaturization of mechanical and electrical components are in high demand. In particular, the ITrelated equipments that take a great part in our domestic industry are in the area requiring high precision technologies. As a consequence, the researches on the development vibration isolation systems that diminish external disturbance or internal vibration are highly required. Among the components comprising the vibration isolation system, air spring has become on a focal point for the researchers due to its merits. This air spring is able to support heavy loads, keep a low natural frequency despite of having a lower value of stiffness, and control the performance of vibration isolation. However, sometimes the sole use of air spring is in demand due to some economic reasons. Under this circumstance, the damping effect of sole air spring may not enough to reduce sufficient amount of vibration. In this study, the air spring mount system connecting with an external chamber is proposed to increase or control the damping effect. To investigate its damping mechanism, the thermal and dynamic behaviors of the system is examined through a theoretical modeling approach in this part of research. In this approach, thermomechanical and Helmholtz resonator type models are to be employed for the air spring/external chambers and connecting tube system, respectively. The frequency response functions (FRFs) derived from the modeling effort are evaluated with physical parametric values and the effects of connecting tube length on these FRFs are identified through computer simulations.