• Title/Summary/Keyword: the waves

Search Result 7,254, Processing Time 0.028 seconds

Localization of Ultra-Low Frequency Waves in Multi-Ion Plasmas of the Planetary Magnetosphere

  • Kim, Eun-Hwa;Johnson, Jay R.;Lee, Dong-Hun
    • Journal of Astronomy and Space Sciences
    • /
    • v.32 no.4
    • /
    • pp.289-295
    • /
    • 2015
  • By adopting a 2D time-dependent wave code, we investigate how mode-converted waves at the Ion-Ion Hybrid (IIH) resonance and compressional waves propagate in 2D density structures with a wide range of field-aligned wavenumbers to background magnetic fields. The simulation results show that the mode-converted waves have continuous bands across the field line consistent with previous numerical studies. These waves also have harmonic structures in frequency domain and are localized in the field-aligned heavy ion density well. Our results thus emphasize the importance of a field-aligned heavy ion density structure for ultra-low frequency wave propagation, and suggest that IIH waves can be localized in different locations along the field line.

A comprehensive analysis of horizontally polarized shear waves in a thin microstructural plate

  • Vikas Sharma;Satish Kumar
    • Structural Engineering and Mechanics
    • /
    • v.85 no.4
    • /
    • pp.501-510
    • /
    • 2023
  • Horizontally polarized shear waves (SH) have numerous applications in various scientific, engineering, and medical fields. The study deals with an investigation of SH-waves in a thin microstructural plate. The plate has been mathematically modelled by employing size dependent consistent couple stress theory, which involves a length parameter, known as characteristic length. Characteristic length is assumed to be of the order of internal microstructures of the material. Dispersion relations have been calculated for the propagation of SH-waves using different set of boundary conditions. Group velocity of the SH-waves has been calculated by using an analytical approach. The mathematical results obtained in the problem are discussed in detail and the impacts of characteristic length parameter and thickness of plate are presented on phase velocity of SH-waves through graphical illustrations.

Burial and scour of truncated cones due to long-crested and short-crested nonlinear random waves

  • Myrhaug, Dag;Ong, Muk Chen
    • Ocean Systems Engineering
    • /
    • v.4 no.1
    • /
    • pp.21-37
    • /
    • 2014
  • This paper provides a practical stochastic method by which the burial and scour depths of truncated cones exposed to long-crested (2D) and short-crested (3D) nonlinear random waves can be derived. The approach is based on assuming the waves to be a stationary narrow-band random process, adopting the Forristall (2000) wave crest height distribution representing both 2D and 3D nonlinear random waves. Moreover, the formulas for the burial and the scour depths for regular waves presented by Catano-Lopera et al. (2011) for truncated cones are used. An example of calculation is also presented.

Scour around vertical piles due to random waves alone and random waves plus currents on mild slopes

  • Ong, Muk Chen;Myrhaug, Dag;Fu, Ping
    • Ocean Systems Engineering
    • /
    • v.6 no.2
    • /
    • pp.161-189
    • /
    • 2016
  • This paper provides a practical stochastic method by which the maximum equilibrium scour depth around a vertical pile exposed to random waves plus a current on mild slopes can be derived. The approach is based on assuming the waves to be a stationary narrow-band random process, adopting the Battjes and Groenendijk (2000) wave height distribution for mild slopes including the effect of breaking waves, and using the empirical formulas for the scour depth on the horizontal seabed by Sumer and Fredsøe (2002). The present approach is valid for wave-dominant flow conditions. Results for random waves alone and random wave plus currents have been presented and discussed by varying the seabed slope and water depth. An approximate method is also proposed, and comparisons are made with the present stochastic method. For random waves alone it appears that the approximate method can replace the stochastic method, whereas the stochastic method is required for random waves plus currents. Tentative approaches to related random wave-induced scour cases on mild slopes are also suggested.

A STUDY ON THE HYDROELASTIC RESPONSE OF A PLATE UNDER IMPULSIVE PRESSURES DUE TO BREAKING WAVES

  • Park, Hang-Shoon;Lee, Dong-Yeon
    • Journal of Theoretical and Applied Mechanics
    • /
    • v.2 no.1
    • /
    • pp.1-14
    • /
    • 1996
  • In this paper, breaking waves are generated in a 2-D wave tank and simulated by using a higher-order boundary element method. A piston-type wavemaker is operated by signals composed of elementary waves. The phase of elementary waves is determined by the linear theory such that they are focused to a prescribed position. Calculated plunging waves coincide well with experiment. A steel box with different plate thicknesses is installed at a predetermined position in the tank. Measured impulsive pressures due to breaking waves are found to be 0.8-1.2$\rho$C2, where $\rho$ corresponds to water density and C to wave celerity. The transverse displacement of the plate is described in terms of modal eigenfunctions. The natural frequencies measured by impact tests in air for thin plate coincide with the computational and theoretical values. The radiationpotential due to plate vibration is derived and the radiation force is expressed in terms of hydroelastic added mass and damping forces. Comparison of natural frequencies of plate in water proves that hydroelastic added mass and damping are properly considered. The measured strain due to regular waves supports the calculated one, but there are apparent discrepancies between theory and experiment in the impulsive case.

An experimental Study on the Motion of a Floater Moored Near Port in Waves Generated by a Ship

  • Nguyen, Van Minh;Nguyen, Thi Thanh Diep;Yoon, Hyeon-Kyu
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2019.05a
    • /
    • pp.98-100
    • /
    • 2019
  • In the past, there were several researchers investigating waves generated by a small boat. Wave generated by a ship can be divided into two distinct systems of waves, such as transverse and diverging waves. It is necessary to understand the behavior of a ship in waves generated by a small boat near port in the view point of ship safety. In this study, the motion of moored floater in waves generated by a small boat near port is investigated. The model test is performed in waves in a square tank in Changwon National University (CWNU). IMU and optical-based system which uses the technique of recording and capturing attitude with respect time are used for measuring 6DOF motion of the moored floater. In addition, tension gauges are used to measure the tension of mooring lines. The effect of waves generated by a small boat on motion of the moored floater near port is investigated through performing the model test in various wave directions of virtually but reasonably assumed wave scenarios.

  • PDF

The Numerical Simulation of Muti-directional Wasves and Statistical Investigation (다방향파의 수치시뮬레이션 및 통계적 검토)

  • 송명재;조효제;이승건
    • Journal of Ocean Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.114-120
    • /
    • 1993
  • Responses of marine vehicles and ocean structures in a seaway can be predicted by applying the probabilistic approach. When we consider a linear system, the responses in a random seaway can be evaluated through spectral analysis in the frequency domain. But when we treat nonlinear system in irregular waves, it is necessary to get time history of waves. In the previous study we introduced one-directional waves (long crested waves)as wave environment and carried out calculations and experiments in the waves. But the real sea in which marine vehicles and structures are operated has multi-directional waves (short crested waves). It is important to get a simulated random sea and analyse dynamic problems in the sea. We need entire sample function or probabillty density function to infer statistical value of random process. However if the process are ergodic process, we can get statistical values by analysis of one sample function. In this paper, we developed the simulation technique of multi-directional waves and proved that the time history given by this method keep ergodic characteristics by the statistical analysis.

  • PDF

A comprehensive study on ship motion and load responses in short-crested irregular waves

  • Jiao, Jialong;Chen, Chaohe;Ren, Huilong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.364-379
    • /
    • 2019
  • Wave-induced ship motion and load responses are usually investigated on the assumption that the incident waves are long-crested. The realistic sea waves are however short-crested irregular waves. Real practice reveals that the ship motion and load responses induced by short-crested waves are different from those induced by long-crested waves. This paper aims to conduct a comprehensive study on ship motions and loads in different wave fields. For this purpose, comparative studies by small-scale model towing tank test and large-scale model sea trial are conducted to experimentally identify the difference between ship motions and loads in long-crested and short-crested irregular waves. Moreover, the influences of directional spreading function of short-crested waves on ship motions and loads are analyzed by numerical seakeeping calculation. The results and conclusions obtained from this study are of great significance for the further extrapolation and estimation of ship motions and loads in short-crested waves based on long-crested wave response results.

Field investigations on port non-tranquility caused by infra-gravity water waves

  • Najafi-Jilani, A.;Rahimi-Maleki, D.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.2 no.1
    • /
    • pp.34-38
    • /
    • 2010
  • Field investigations have been carried out in two 60-day stages on the surf beat low frequency waves in Anzali port, one of the main commercial ports in Iran, located in southwest coast of the Caspian Sea. The characteristics of significant water waves were measured at three metering stations in the sea, one at the entrance of the port and three in the basin. The measured data were inspected to investigate the surf beat negative effects on the tranquility of the port. Using field measurements and complementary numerical modeling, the response of the basin to the infra-gravity long waves was inspected for a range of wave frequencies. It was concluded that the water surface fluctuations in the port is strongly related to the incident wave period. The long waves with periods of about 45s were recognized as the worst cases for water surfaceperturbation in the port. For wave periods higher than the mentioned range, the order of fluctuation was generally low.

The Physiological Influence of Acoustic Information on Landscape Preference (청각정보가 경관의 선호도에 미치는 생리적 영향)

  • 서주환;성미성
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.31 no.4
    • /
    • pp.49-56
    • /
    • 2003
  • This study is to find physiological effects of acoustic information on landscape preference. Both the volume and the rate of $\alpha$-waves and $\beta$-waves were used to measure the effects in the study. The result of this study are summarized as follows: The outputting amount of $\alpha$-waves are sorted by different types of visual and acoustic factors. The results show that acoustic factors interacted with visual factors. That is, although visual factors are positive, the volume of $\alpha$-waves depends upon the character of acoustic factors; positive acoustic factors produce more $\alpha$-waves than negative or neutral(soundless) acoustic factors. Also the volume of $\alpha$-waves increase in the case of positive acoustic factors even if there is the same negative visual information. The results show that the volume of $\alpha$-waves increase without connecting with the types of visual factors. The volume of $\beta$-waves are largely reduced when visual stimulus is positive and soundless stimulus is provided. On the other hand, they generally increase when both visual and acoustic stimuli are negative, which fosters extremely unstable, tense and upset stress. The rate of $\alpha$-waves increase according to supplying positive acoustic factors in the opposed visual factors. The rate of wave(shouldn't be $\alpha$-waves\ulcorner) is high if both visual and acoustic factors are positive, so it is the most comfortable and causes no stress. Preference is the lowest if visual and acoustic factors are negative, but a -waves are conspicuously low in positive visual and negative acoustic factors.