• 제목/요약/키워드: the viscosity

검색결과 6,473건 처리시간 0.035초

Effects of Calcium on Textural and Sensory Properties of Ramyon (칼슘의 첨가에 따른 라면의 조직감과 관능적 특성)

  • 정재홍
    • The Korean Journal of Food And Nutrition
    • /
    • 제12권3호
    • /
    • pp.252-257
    • /
    • 1999
  • In an attempt to evaluate the effects of calcium on paste or gelatinization properties by amylograph and mixing properties by farinograph of wheat flour and on viscosity property cooking quality textural and sensory properties of Ramyon were examined. The contents of calcium used were from 1.0% to 3.0% based on flour weight. The viscosity property of wheat flour with calcium was increased the initial past-ing temperature but the amylograph peak viscosity were decreased in vice versa. The farinograph absorp-tion stability and breakdown were increased by calcium. The shear extrusion force and hardness of Ram-yon manufactured with calcium were shown much higher value than those of control. At cooking quality examination of Ramyon manufactured with calcium weight of cooked Ramyon was increased by volume was decreased. Extraction amounts of Ramyon manufactured with calcium during cooking were much smaller than those of control. These changes will provided many advantages in the preparation of Ram-yon. The I2 reaction value of Ramyon manufactured with calcium and control were shown to almost same values. Sensory properties of cooked Ramyon which was manufactured with calcium showed quite acceptable. Based on the cooking and sensory evaluation test addition of 0.3% calcim to wheat flour may be suitable for processing Ramyon.

  • PDF

Paticle Size Distribution, Pasting Pattern and Texture of Gel of Acorn, Mungbean, and Buckwheat Starches (도토리, 녹두 및 메밀전분의 입도분포, 호화패턴과 겔특성)

  • Cho, Sung-Ae;Kim, Sung-Kon
    • Korean Journal of Food Science and Technology
    • /
    • 제32권6호
    • /
    • pp.1291-1297
    • /
    • 2000
  • Particle size distribution, pasting properties by Rapid Visco Analyser, and textural properties of acorn, mungbean and buckwheat starches, which are the basic raw materials for mook, are compared. The major particle size of mungbean starch was $10{\sim}30$ micron, whereas acorn and buckwheat starches were $5{\sim}20$ micron. At the same starch concentration, mungbean starch had the highest peak viscosity, breakdown and setback. Acorn starch showed the lowest peak viscosity and breakdown. The peak viscosity of buckwheat starch was close to that of mungbean, however the trough and final viscosity were comparable to those of acorn starch. At the same peak viscosity, mungbean starch showed the lowest trough and final viscosity and the highest breakdown and setback. Acorn starch was differentiated from buckwheat starch in that the former had the higher value of setback. The textural properties of mungbean starch gel were significantly different from others. The texture of gels from acorn and buckwheat starches revealed that only the hardness and gumminess were different each other. The hardness of starch gels were negatively correlated with trough and final viscosity, and positively correlated with setback.

  • PDF

A Comparative Study on the Characteristics of Binary Oxidized Carbon Nanofluids Based DI Water and Ethanol (물-에탄올 기반 이성분 산화탄소나노유체의 특성 비교 연구)

  • Park, Sung-Seek;Kim, Nam-Jin
    • Journal of the Korean Solar Energy Society
    • /
    • 제32권6호
    • /
    • pp.85-92
    • /
    • 2012
  • A nanofluid is a fluid containing suspended solid particles, with sizes on the order of nanometers. Normally, nanofluids have higher thermal conductivitiest han their base fluids. Therefore, we measured the thermal conductivity and viscosity of oxidized carbon nanofluids based the mixture of distilled water and ethanol (ethanol concentration is 0.2) oxidized carbon nanofluids were made by ultrasonic dispersing oxidized multi-walled carbon nanotubes in the mixture of distilled water and ethanol at the rates of 0.001~ 0.1 vol%. The thermal conductivity and viscosity of oxidized carbon nanofluids were measured by using transient hot-wire method and rotational digital viscometer, respectively. And all of experiments were carried out at the same temperature conditions($10^{\circ}C$, $25^{\circ}C$ and $70^{\circ}C$). As a result, when volume fraction of nanofluids is 0.1 vol%, thermal conductivity was improved 13.6% ($10^{\circ}C$), 15.1% ($25^{\circ}C$), and 17.0% ($70^{\circ}C$), and its viscosity was increased by 36.0% ($10^{\circ}C$), 32.9% ($25^{\circ}C$) and 19.5% ($70^{\circ}C$) than the base fluids.

A Study on the Characteristics of the Thermal conductivity of Nanofluids Containing Graphene (그래핀이 포함된 나노유체의 열전도도 특성에 대한 연구)

  • Park, Sung-Seek;Jeon, Youn-Han;Kim, Nam-Jin
    • Journal of the Korean Solar Energy Society
    • /
    • 제32권6호
    • /
    • pp.93-99
    • /
    • 2012
  • A nanofluid is a fluid containing suspended solid particles, with sizes on the order of nanometers. Especially graphene nanoparticle that has the high thermal conductivity properties among the various nanoparticles added to the nanofluid is receiving attention. Graphene is a flat monolayer of $sp^2$-bonded carbon atoms tightly packed into a honeycomb lattice. And are known to have very high thermal conductivity. Therefore, we compared thermal conductivity with viscosity of graphene M-5 nanofluids and graphene M-15 nanofluids. Graphene M-5 and graphene M-15 have different average particle diameters and the other properties are the same. Two kinds of graphene nanofluids was examined by measuring thermal conductivity via transient hot-wire method. And the viscosity was measured by using a rotational digital viscometer. As a result, graphene M-5 nanofluids exhibited better thermal conductivity and viscosity than graphene M-15 nanofluids.

High-pressure rheology of polymer melts containing supercritical carbon dioxide

  • Lee Sang-Myung;Han Jae-Ro;Kim Kyung-Yl;Ahn Young-Joon;Lee Jae-Wook
    • Korea-Australia Rheology Journal
    • /
    • 제18권2호
    • /
    • pp.83-90
    • /
    • 2006
  • Supercritical carbon dioxide ($scCO_2$) has advantages of being incorporated in polymer with high solubility and of being recovered easily by depressurizing. $scCO_2$ reduces the viscosity of polymer melt and it is expected to be use as a plasticizing agent. In this work, we studied on the effect of $scCO_2$ on the rheological properties of polymer melts during extrusion process. Slit die attached to twin screw extruder was used to measure the viscosity of polymer melts plasticized by supercritical $CO_2$. A gas injection system was devised to accurately meter the supercritical $CO_2$ into the extruder barrel. Measurements of pressure drop within the die, confirmed the presence of a one phase mixture and a fully developed flow during the measurements. The viscosity measurement of polypropylene was performed at experimental conditions of various temperatures, pressures and $CO_2$ concentrations. We observed that melt viscosity of polymer was dramatically reduced by $CO_2$ addition.

A Study On the Application of VHVI Base Oil - Hydraulic Fluid for Construction Equipments (VHVI 기유의 제품 적용 기술에 관한 연구 - 건설 중장비용 유압유)

  • Kwon W.S.;MOON W.S.;Yoon H.H.;Kim K.W.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 한국윤활학회 2003년도 학술대회지
    • /
    • pp.152-157
    • /
    • 2003
  • This study represents the newly advanced formulation of hydraulic fluids for extended drain interval and introduces the performance results of used oil samples from various excavators. The used oil samples, in this paper show that there is a sharp change in viscosity drop and moderate additive depletion when viscosity index of hydraulic oil is very high. For the extension of hydraulic fluid life, it is necessary to improve the stability of viscosity and oxidation. New target properties from the used oil analysis were proposed for extended life. Performance of newly developed hydraulic oil based on used oil analysis is compared with previously used one. The properties of new formulation are the viscosity index of 140 and improved thermal stability consists of VHVI base oil. Field test results showed the possibility of extension of fluid life. Additionally, for development of high performance product, new required properties and performances were discussed.

  • PDF

Analysis of the relationship between composition and viscosity of soda-lime glass bottles (소다석회유리병의 조성과 점도의 상관관계 분석)

  • Seung Min Kang;Chang-Sam Kim
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • 제33권1호
    • /
    • pp.7-14
    • /
    • 2023
  • Forty Viscosity data of glass bottles fabricated in a glass bottle manufacturing plant for 4 years were calculated using Lakatos model. The relationship between the glass bottle compositions and viscosities at log η of 3, 6.6, 10 and 12.3 Pa·s was analyzed. MgO that was a component of the glass bottle showed the maximum coefficient of variation of 0.89, but it gave a very small change in the viscosity. CaO that was another component of the glass bottle lowered the isokom temperature because it tended to reduce the number of non-bridging oxygen at temperature below a softening point.

Improvement method for viscosity measurement of high viscosity paper and fabric cultural heritages (고점도 지류 및 섬유 문화재의 점도 측정 개선 방법 연구)

  • Kim, Young-Hee;Hong, Jin-Young;Jo, Chang-Wook;Kim, Soo Ji;Lee, Jeung-Min;Seo, Min Seok;Choi, Kyoung Hwa
    • 보존과학연구
    • /
    • 통권34호
    • /
    • pp.20-29
    • /
    • 2013
  • Paper, textile and wood materials are mainly consisted of cellulose. Cellulose is high molecule and make up the strong crystalline structure by hydrogen bonds. In particular, the polymerization degree of cellulose are closely related to the strength of fiber, and the permanence. the useful life of fiber, also depends on the degradation of this substance. The viscosity of cellulose is considered to be an important indicator of fiber damage in high molecule polymers. The viscosity measurements with CED solution is used to measure the molecular weight and the degree of polymerization of cellulose. Cellulose viscosity of wood fibers is measured with TAPPI standard method T230. However, TAPPI standard method T230 is difficult to completely dissolving the cellulose of high molecular weight and large degree of polymerization, such as Korea traditional papers and fabrics made with mulberry, ramie, cotton fibers. In this study, The high viscosity of hanji and fabric was measured with TAPPI standard method T254. T254 method is that the cellulose specimen with the proper amount of weaker (0.167M CED) solution, and completely dissolved with the stronger (1.0M CED) solution. It was found that cellulose with high degree of polymerization was dissolved more easily in general CED method.

  • PDF

Flowability Properties of Combined High Flowing Self-Compacting Concrete to the Addition of Viscosity Agent (증점제 첨가량 변화에 따른 병용계 고유동 자기충전 콘크리트의 유동특성)

  • Choi, Yun-Wang;Jeong, Jae-Gwon;Eom, Joo-Han;Choi, Wook;Kim, Kyung-Hwan;Moon, Dae-Joong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 한국콘크리트학회 2008년도 추계 학술발표회 제20권2호
    • /
    • pp.369-372
    • /
    • 2008
  • In this research experimentally analyzes the flow characteristics of a combined High flowing Self-Compacting Concrete of which the viscosity agent and defoaming agent addition amount are changed, to make the combined High flowing Self-Compacting Concrete that can secure the required flow performance and air amount. As a result of the experiment, the slump flow of the combined High flowing Self-Compacting Concrete added with viscosity agent increases when the viscosity agent addition amount is 0.2%(${\times}$W %). When viscosity agent addition amount increases, viscosity agent shows that it largely deviates from the regulation value in the flow time of V-funnel, which is presented in the JSCE standards (grade 2). Also, all mixtures, except for mixtures added with viscosity agent, defoaming agent, and AE agent, do not meet a target air amount $4.5{\pm}1.5%$. High flowing Self-Compacting Concrete mixtureadded with defoaming agent shows that although time passes after its first mixture, its air amount reduces a little. Based on the experiment, we can know an optimal polymer amount to obtain the required flow performance

  • PDF

Dilute Solution Properties of Biopolymer Produced by Alkali-Tolerant Bacillus sp. (알칼리 내성 Bacillus Sp.에 의한 생물 고분자의 희석용액 특성)

  • Lee, Shin-Young;Kim, Jin-Young
    • Journal of Industrial Technology
    • /
    • 제20권A호
    • /
    • pp.39-44
    • /
    • 2000
  • Highly viscous biopolymer from alkali-tolerant Bacillus sp. was purified and its solution properties were investigated. The intrinsic viscosities for crude biopolymer and biopolymers purified by dialysis or CPC(cetylpyridinium chloride) treatment were 58.24, 73.60 and 42.18 dL/g, respectively. The intrinsic viscosity of biopolymer showed the maximum value at the neutral pH but it was decreased remarkably at the alkaline or acidic pH. Biopolymer exhibited the property of polyelectrolyte, showing the sharp decrease of intrinsic viscosity by the addition of NaCl. Intrinsic viscosity of dilute solution at the low NaCl concentration was exponentially dependent on temperature and its temperature dependency was increased with NaCl concentrations. The chain stiffness, coil overlap parameter, and critical concentration were 0.09, 5.25 and 0.07g/dL, respectively. Temperature dependency on intrinsic viscosity of biopolymer solution was different each other at $45^{\circ}C$. Flow activation energies at temperatures above $45^{\circ}C$ were constant, while those at temperatures below $45^{\circ}C$ increased with increase of added NaCl concentration.

  • PDF