• Title/Summary/Keyword: the viscosity

Search Result 6,461, Processing Time 0.03 seconds

Characteristics of Cladding Process with High Viscosity Mixing Powder Using $CO_2$ Laser ($CO_2$ 레이저를 이용한 고점성 혼합분말의 클래딩 가공 특성)

  • 이영곤;전병철;오동수;서병권;김재도
    • Proceedings of the KWS Conference
    • /
    • 2000.10a
    • /
    • pp.256-259
    • /
    • 2000
  • High viscosity mixing powder is a very useful material for laser cladding. This material has a high viscosity so that it can be sticked to substrate. Therefore, Laser cladding can be performed on a curved or slope surface. Laser cladding can be easily performed with the material instead of wire that is difficult to be manufactured in some case. In this experiment, it was used a high viscosity mixing powder which consists of a high temperature flux and a bronze powder. And AC2B alloy material was used as a substrate. Flux prevents the clad layer from being oxidized and increases bonding property between substrate and cladding material. It makes possible to laser cladding at low level energy.

  • PDF

Viscosity Index Enhancement Through Dumb-Bell Blending of Lubricants

  • Shim, Joo-Sup;Cho, Won-Oh
    • Tribology and Lubricants
    • /
    • v.11 no.2
    • /
    • pp.1-7
    • /
    • 1995
  • Viscosity index is an arbitray number used to characterize the variation of lubricant viscosity with respect to temperature. It is well recognized in the oil industry that as refining severity increases, lubricant VI increases. Consequently, VI is often perceived as a measure of lubricant quality. Futhermore, a 95 VI minimum specification is commonly imposed in marketing base stocks. These factors provide the incentitive for this study to carefully analyze VI definition and two component viscosity blending techniques to investigate how they affect VI change, and finally to examine possible avenues to produce 95+VI base stocks by blending sub-95 VI base stocks.

A Study on the Rheological properties of Glucomannan (Glucomannan 의 유변학적 성질에 관한 연구)

  • 김경이
    • The Korean Journal of Rheology
    • /
    • v.5 no.2
    • /
    • pp.161-169
    • /
    • 1993
  • Glucomannan(G.M.)은 Amorphophallus Konjac C. Koch의 tuber로부터 분리되었고. 이 G.M.은 다시 침전제로 메탄올을 사용하여 4단계로 분별되었다.(F.1, F.2, F.3, F.4,). 각분 별물에 비하여 직선으로부터 벗어남을 보였다. Low shear viscometer로 G.M. 용액의 viscosity를 측정하였고 농도와 zero shear specific viscosity의 logarithm을 도시한 결과 inflection point를 나타내었다. 이것은 G.M. 분자들의 coil overlap의 시작에서 기인한 것이 고 묽은 용액에서 진한 용액으로의 전이행동은 임계농도. C*=4/[η]에서 일어났고 이때의 zero shear specific viscosity는 10을 나타내었다. 또한 specific viscosity는 묽은 용액에대해 서는 C14로써 변화하였고 진한 요액에서는 C3.0으로변화하였다. G.M.의 고체상태에 대한 유 전성($\varepsilon$',$\varepsilon$")과 점탄성(C',C")계수들을 액체질소 온도에서부터 15$0^{\circ}C$ 온도범위에 걸쳐 4단계로 film을 건조시키면서 10Hz에서 측정하였다. G.M. film의 유전성과 점탄성의 허수부 분은 ($\varepsilon$", C"), -10$0^{\circ}C$에서 peak를 나타내었고 이 peak는 hydroxy methyl 기들의 회전 운동에서 생겨난 것이다. 건조시키지 않은 상태의 G.M. film의 유전성과 점탄성의 허수부분 의 값들은 -5$0^{\circ}C$에서 물 분자의 운동에 의하여 생긴 peak를 보였다.

  • PDF

Prediction of Transport Properties for Transportation of Captured CO2. 1. Viscosity (수송조건 내 포집 이산화탄소의 전달물성 예측. 1.점성)

  • Lee, Won Jun;Yun, Rin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.4
    • /
    • pp.195-201
    • /
    • 2017
  • In this study, the viscosity of a $CO_2-gas$ mixture was investigated for the transportation of the captured $CO_2-gas$ in pipelines and for the designing of a thermal system, both of which involve the utilization of the $CO_2-gas$ mixture. The viscosities of the $CO_2-gas$ mixture, $CO_2+CH_4$, $CO_2+H_2S$, and $CO_2+N_2$ were predicted using three different models as follows : Chung, TRAPP, and REFPROP. The predictability values of the models were validated by comparing the estimated results with the experiment data for the $CO_2+CH_4$ and $CO_2+N_2$ under high-density conditions. The Chung model showed 2.41%, which is the lowest mean deviation of the prediction among the model. Based on the Chung model, the mixture mole fractions were changed from 0.9, 0.95, and 0.97, the mixture pressure was ranged from 80 bar to 120 bar by 10 bar, and the mixture temperature was varied from 310 K to 400 K by 10 K to observe the effects of the parameters on the mixture viscosity. Considering the high mole fraction of the $CO_2$ in the mixture, a significant variation of the mixture viscosity was observed close to the pseudo-critical temperature, and the viscosity for the $CO_2+H_2S$ mixture shows the highest values compared with those of the $CO_2+CH_4$ and $CO_2+N_2$.

Quantification of Nerve Viscosity Using Shear Wave Dispersion Imaging in Diabetic Rats: A Novel Technique for Evaluating Diabetic Neuropathy

  • Feifei Liu;Diancheng Li;Yuwei Xin;Fang Liu;Wenxue Li;Jiaan Zhu
    • Korean Journal of Radiology
    • /
    • v.23 no.2
    • /
    • pp.237-245
    • /
    • 2022
  • Objective: Viscoelasticity is an essential feature of nerves, although little is known about their viscous properties. The discovery of shear wave dispersion (SWD) imaging has presented a new approach for the non-invasive evaluation of tissue viscosity. The present study investigated the feasibility of using SWD imaging to evaluate diabetic neuropathy using the sciatic nerve in a diabetic rat model. Materials and Methods: This study included 11 diabetic rats in the diabetic group and 12 healthy rats in the control group. Bilateral sciatic nerves were evaluated 3 months after treatment with streptozotocin. We measured the nerve cross-sectional area (CSA), nerve stiffness using shear wave elastography (SWE), and nerve viscosity using SWD imaging. The motor nerve conduction velocity (MNCV) was also measured. These four indicators and the histology of the sciatic nerves were then compared between the two groups. The performance of CSA, SWE, and SWD imaging in distinguishing the two groups was assessed using receiver operating characteristic (ROC) analysis. Results: Nerve CSA, stiffness, and viscosity in the diabetic group was significantly higher than those in the control group (all p < 0.05). The results also revealed a significantly lower MNCV in the diabetic group (p = 0.005). Additionally, the density of myelinated fibers was significantly lower in the diabetic group (p = 0.004). The average thickness of the myelin sheath was also lower in the diabetic group (p = 0.012). The area under the ROC curve for distinguishing the diabetic neuropathy group from the control group was 0.876 for SWD imaging, which was significantly greater than 0.677 for CSA (p = 0.030) and 0.705 for SWE (p = 0.035). Conclusion: Sciatic nerve viscosity measured using SWD imaging was significantly higher in diabetic rats. The viscosity measured using SWD imaging performed well in distinguishing the diabetic neuropathy group from the control group. Therefore, SWD imaging may be a promising method for the evaluation of diabetic neuropathy.

The Pore-filling Effect of Bulk Graphite According to Viscosity of Impregnant (함침재의 점도에 따른 벌크흑연의 기공 채움 효과)

  • Lee, Sang-Min;Lee, Sang-Hye;Roh, Jae-Seung
    • Korean Journal of Materials Research
    • /
    • v.31 no.2
    • /
    • pp.101-107
    • /
    • 2021
  • Pores produced by carbonization in bulk graphite process degrade the mechanical and electrical properties of bulk graphite. Therefore, the pores of bulk graphite must be reduced and an impregnation process needs to be performed for this reason. In this study, bulk graphite is impregnated by varying the viscosity of the impregnant. The pore volume and pore size distribution, according to the viscosity of the impregnant, are analyzed using a porosimeter. The total pore volume of bulk graphite is analyzed from the cumulative amount of mercury penetrated. The volume for a specific pore size is interpreted as the amount of mercury penetrating into that pore size. This decreases the cumulative amount of mercury penetrating into the recarbonized bulk graphite after impregnation because the viscosity of the impregnant is lower. The cumulative amount of mercury penetrating into bulk graphite before impregnation and after three times of impregnation with 5.1cP are 0.144 mL/g and 0.125 mL/gm, respectively. Therefore, it is confirmed that the impregnant filled the pores of the bulk graphite well. In this study, the impregnant with 5.1 cP, which is the lowest viscosity, shows the best effect for reducing the total pore volume. In addition, it is confirmed by Raman analysis that the impregnant is filled inside the pores. It is confirmed that phenolic resin, the impregnant, exists inside the pores through micro-Raman analysis from the inside of the pore to the outside.

Effect of the imported bituminous coal and the domestic anthracite coal mixed with petroleum coke (석유코크스와 혼합된 국내무연탄과 수입유연탄 슬래그의 특성 규명)

  • Kim, Min-Kyung;Oh, Myong-Sook S.
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.230-233
    • /
    • 2008
  • The vanadium rich ash of petroleum coke can give a slagging problem during because of the high melting point of $V_2O_3$. For continuous removal of the slag, petroleum coke is often mixed with coal, and the viscosity of the mixed slag is an important property, determining the gasification temperature. The viscosities of the mixed slag from various mixing ratios of petroleum coke and a bituminous coal were investigated. When mixed with a crystalline coal slag, $T_{cv}$ was increased at a higher the coke content in the mixed feed. When the $V_2O_3$ concentration was greater than 4.5%, it was difficult to get accurate measurements of $T_{cv}$. The SEM/EDX analyses of the cooled slag revealed that the major crystalline phase was anorthite, and $T_{cv}$ should be related to the formation temperature of anorthite. The SEM/EDX analyses also showed that, at low concentrations of vanadium, part vanadium formed a crystalline phase with Al-Si-Ca-Fe, and the rest remained in the glassy phase, suggesting that vanadium existed as a slag component at the low viscosity region. At a high concentration, vanadium forms a phase with Ca, and the Ca-V phase was separated from the slag phase, and formed a layer above the slag. FeO in petroleum coke also played an important role determining viscosity: at high temperatures, increased FeO lowered the viscosity, but as it formed a spinel phase, the depletion of FeO in the slag resulted in a higher viscosity.

  • PDF

Effects of Sugars and Pectin on the Quality Characteristics of Low Sugar Wild Vine (Vitis coignetiea) Jam (당과 펙틴이 저당 머루잼의 품질특성에 미치는 영향)

  • Kim, Moon-Jung;Yoon, Suk-Hoo;Jung, Mun-Yhung;Choe, Eun-Ok
    • Korean journal of food and cookery science
    • /
    • v.24 no.2
    • /
    • pp.206-211
    • /
    • 2008
  • This study investigated the feasibility of manufacturing a low-sugar wild vine jam by examining viscosity, water content, and pH, as affected by sugar and pectin content. The jams were prepared by adding various amounts of sucrose, glucose, or fructose (1.89 M, 2.34 M, 2.63 M, or 2.92 M) and/ or pectin (0%, 0.3%, 0.5%, 0.8%, or 1%) to wild vine juice and heating at $90^{\circ}C$ for 3 hrs. A higher viscosity was shown for the jam manufactured with sucrose as compared to those made with glucose or fructose, and the greater the sucrose level the higher the viscosity of the jam. The jam with 50% reduced sugar content showed a similar viscosity to the control jam, which contained only 2.92 M sucrose, when the sugar was co-added with pectin at 0.5% for the low sucrose jam, and at 0.8% for the low glucose or low fructose jams, respectively. The water content of the low sucrose jam was lower than that of the low glucose or low fructose jams, and adding pectin had no significant effect on the water content of the low sugar jam. The pH levels of the jams were not significantly different, regardless of the type and concentration of sugar, temperature, or pectin addition, and ranged between 3.6 and 3.8. Overall, the results clearly show that wild vine jam with 50% reduced sugar content and having the same viscosity as control jam, can be manufactured when pectin and sugar are added together.

Study on rheological characterization of Gellan gum Produced by Pseudomonas elodea -Comparative Studies on Rheological Characterization of Gellan gum and Agar- (Pseudomonas elodea에 의해서 생산된 Gellan gum과 Agar의 rheology 특성 비교연구)

  • 권혜숙;구성자
    • Korean journal of food and cookery science
    • /
    • v.4 no.1
    • /
    • pp.17-26
    • /
    • 1988
  • The polysaccharide produced by pseudomonas elodea, Gellan gum, was rheologically characterized, compared with agar. Rheological properties were determined from the change in the value of intrinsic viscosity with the pH and salt concentration. At the range of pH 2∼ll and salt 0∼0.16M KC1, the intrinsic viscosity of Gellan gum ranged from 8.8 to 21.2dl/g and agar ranged from 1.97 to 11.46d1/g. In the absence of salt, the intrinsic viscosity of Gellan gum increased as the pH of solution increased up to neutral pH then decreased slightly at alkaline pH, whearas the intrinsic viscosity of agar increased as the pH of solution increased up to pH 9 then decreased slightly. Intrinsic viscosity of Gellan gum and agar decreased with an increase in salt concentration. The chain stiffness parameter for the Gellan gum was 0.033. The overlap parameter of Gellan gum and agar were 0.047g/dl and 0.087g/dl, respectively. Gellan gum and agar were shear rate dependent or pseudoplastic. The yield stress and proportionality constant of Gellan gum increased slightly as the concentration increase, on the other hand, the shear index of Gellan gum showed a maximum at 0.75g/dl and gradually decreased as the concentration increase. The apparent viscosity of Gellan gum and agar decreased as the temperature increase. A lower concentration of the divalent cations calcium and magnesium is required to obtain maximum gel strength than for the monovalent cations sodium and potassium.

  • PDF