• Title/Summary/Keyword: the viscosity

Search Result 6,452, Processing Time 0.032 seconds

The Helium-Xenon Interaction Potential

  • Elaheh K. Goharshadi;Majid Moinssadati
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.9
    • /
    • pp.945-947
    • /
    • 2001
  • The He-Xe interaction potential has been determined using a direct inversion of the experimentally reduced-viscosity collision integrals obtained from the corresponding states correlation. The potential is in a good agreement with the previously determined potential. The potential predicts viscosity and diffusion coefficients and they are found to be in a good agreement with experiment.

Effect of surfactant adsorption on the rheology of suspensions flocculated by associating polymers

  • Otsubo, Yasufumi;Horigome, Misao
    • Korea-Australia Rheology Journal
    • /
    • v.15 no.4
    • /
    • pp.179-185
    • /
    • 2003
  • Associating polymers act as flocculants in colloidal suspensions, because the hydrophobic groups (hydrophobes) can adsorb onto particle surfaces and create intermolecular cross-linking. The steady-shear viscosity and dynamic viscoelasticity were measured for suspensions flocculated by multichain bridging of associating polymers. The effects of surfactant on the suspension rheology are studied in relation to the bridging conformation. The surfactant molecule behaves as a displacer and the polymer chains are forced to desorb from the particle surfaces. The overall effect of surfactant is the reduction of suspension viscosity. However, the additions of a small amount of surfactant to suspensions, in which the degree of bridging is low, cause a viscosity increase, although the number of chains forming one bridge is decreased by the forced desorption of associating polymer. Since the polymer chains desorbed from one bridge can form another bridge between bare particles, the bridging density over the system is increased. Therefore, the surfactant adsorption leads to a viscosity increase. The surfactant influences the viscosity in two opposing ways depending on the degree of bridging.

The Effect of Viscosity on the Spray Characteristics of Pressure Swirl Atomizer (스월분무특성에 미치는 점성의 영향)

  • Yoon, S.J.;Cho, D.J.
    • Journal of ILASS-Korea
    • /
    • v.4 no.4
    • /
    • pp.24-29
    • /
    • 1999
  • In the pressure swirl atomizer, the liquid is injected through tangential passages into a swirl chamber, from which it emerges with both tangential and axial velocity components to form a thin conical sheet at the nozzle exit. This sheet rapidly attenuates, finally disintegrating into ligaments and then drops. The purpose of this study is to measure the spray characteristics according to variation of viscosity of the spray produced by the pressure swirl atomizer. The nozzle tested here were especially designed for this investigation. The discharge coefficient is determined by measuring the volume flow rate with a flow meter and the cone angle of the liquid sheets issuing from the nozzle is obtained from series of photographs of the sheet for various liquid viscosity and injection pressure. And mean drop size is measured by image processing method. It is found that the geometrical characteristics of the nozzle and the variation of viscosity were the influential parameters to determine the spray characteristics such as the cone angle, discharge coefficients and SMD.

  • PDF

A Study on the Measurement of the Fluid Viscosity by Using the Torsional Vibration of a Circular Rod (원형 봉의 비틀림 진동에 의한 유체 점도 측정 연구)

  • Chun, Han-Yong;Kim, Jin-Oh
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.6
    • /
    • pp.1016-1025
    • /
    • 2002
  • This paper deals with the measurement of the fluid viscosity by using the torsional vibration of a circular rod excited by a torsional vibrator at one end. The effect of an adjacent viscous fluid on the torsional vibration of the rod has been studied theoretically and expressed in terms of the mechanical impedance. The theoretically-obtained trend that the mechanical impedance is proportional to the square root of the viscosity times the density of the fluid has been confirmed by the impedance measurement. The paper demonstrates that a torsionally-vibrating rod can be used as a sensor to measure the viscosity of a fluid.

Brownian Dynamics Simulation Study on the Anisotropic FENE Dumbbell Model for Concentrated Polymer Solution and the Melt

  • Sim, Hun Gu;Lee, Chang Jun;Kim, Un Jeon;Bae, Hyeong Seok
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.9
    • /
    • pp.875-881
    • /
    • 2000
  • We study the rheological properties of concentrated polymer solution and the melt under simple shear and elon-gational flow using Brownian dynamicssimulation. In order to describe the anisotropic molecular motion, we modifiedthe Giesekus' mobility tensor by incorporating the finitely extensible non-linear elastic (FENE) spring force into dumbbell model. To elucidate the nature of this model, our simulation results are compared with the data of FENE-P ("P"standsfor the Perterin) dumbbell model and experiments. While in steady state both original FENE and FENE-P models exhibit a similar viscosity response,the growthof viscosity becomes dissimilar as the anisotropy decreases and the flowrate increases. The steady state viscosity obtained from the simulation well describes the experiments including the shear-thinning behavior in shear flow and viscosity-thinning behavior in elongational flow. But the growth of viscosity oforiginal FENE dumbbell model cannot describe the experimental results in both flow fields.

The Elongation Method for the Measuring Surface Tension of High Viscosity Printing Ink (인장법에 의한 고점도 잉크의 표면장력 측정법)

  • Ha, Young-Baeck;Youn, Jong-Tae;Koo, Chul-Whoi
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.21 no.2
    • /
    • pp.89-100
    • /
    • 2003
  • We have reviewed the method for surface tension of printing inks. Most of the methods fir for the low viscosity inks and solvents for inks. However, the inks for the offset lithography and intaglio should have high viscosity and high tack. The elongation of the ink filaments has more effect on the measuring surface tension than the energy of the surface molecules. In this paper, we propose the elongation method to estimate the surface tension of high viscosity printing inks. Even though we could measure the surface tension for low viscosity inks such as gravure and screen, elongation method could more useful to estimate the surface tension of lithography and intaglio inks than any other methods.

  • PDF

Effects of Physical Properties of Glass on the TCR of $RuO_2$ Thick Film Resistors for Hybrid Integrated Circuits (HIC) (HIC용 $RuO_2$ 후막저항체에서 유리의 물리적 성질이 TCR에 미치는 영향)

  • Lee, B.S.;Lee, J.
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.11
    • /
    • pp.974-978
    • /
    • 1993
  • Glass viscosity effects on the electrical properties and microstructure of RuO2 based thick film resistors (TFR) using alumina modified lead borosilicate glasses were studied. AT 85$0^{\circ}C$, the glass viscosities were increased from 4.24Pa.s to 51.5Pa.s when the alumina was added from none to 14 weight percent to the standard glass of 63% PbO, 25% B2O3 and 12% SiO2. The resistivities of resistors were generally decreased and the microstructure development was retarded as the viscosity of the glass increased. This is contrary to the generally accepted thought that the low resistivity is due to fast microstructure development kinetics in TFR. Even though the glass viscosity retards the microstructure development kinetics, the overall network formations are favored for higher viscosity of glass, such that the sheet resistivities were decreased as the glass viscosity increased.

  • PDF

Rheological behavior during the phase separation of thermoset epoxy/thermoplastic polymer blends

  • Kim, Hongkyeong;Kookheon Char
    • Korea-Australia Rheology Journal
    • /
    • v.12 no.1
    • /
    • pp.77-81
    • /
    • 2000
  • Rheological behavior of thermoset/thermoplastic blends of epoxy/polyethersulphone (PES) was monitored during curing of the epoxy resin. During the isothermal curing of the mixture, a fluctuation in viscosity just before the abrupt viscosity increase was observed. This fluctuation is found to be due to the phase separation of PES from the matrix epoxy resin during the curing. The experimentally observed viscosity fluctuation is simulated with a simple two phase suspension model in terms of the increase in domain size. The viscosity profiles obtained experimentally at different isothermal curing temperatures are in good agreement with the predictions from the simple model taking into account the viscosity change due to the growth of PES domain and the network formation of the epoxy matrix.

  • PDF

Sensory Characteristics of Cream Soup Prepared with Rice Flour (쌀가루 첨가 크림수프의 관능적 특성)

  • 이숙영;정청송;윤혜현
    • Korean journal of food and cookery science
    • /
    • v.19 no.6
    • /
    • pp.723-728
    • /
    • 2003
  • The sensory characteristics of cream soup containing 0, 25, 50, 75 and 100% rice flour were investigated in order to develop a new processed food using rice. The Hunter L(lightness) value increased with the amount of rice flour, while the a(redness) value and b(yellowness) value decreased, significantly. The viscosity of rice cream soup significantly decreased with the increasing amount of rice flour. Based on the sensory evaluation, the cream soup samples with larger rice flour component showed a higher clean taste score, while those with the least rice flour resulted in higher darkness, viscosity, greasy taste, md softness. The overall acceptance was the highest in the cream soup with 75% and 100% rice flour. In terms of the color and viscosity, good correlations were observed between the sensory evaluation and the objective analysis. The overall acceptance showed a significant positive correlation with a clean taste, while there was a negative correlation with a greasy taste and the viscosity measured by a viscometer.

The rheological properties of poly(vinylidene fluoride-co-hexafluoropropylene) solutions in dimethyl acetamide

  • Lee, Ki-Hyun;Song, In-Kyu;Kim, Byoung-Chul
    • Korea-Australia Rheology Journal
    • /
    • v.20 no.4
    • /
    • pp.213-220
    • /
    • 2008
  • The effects of temperature on the rheological properties of the solutions of poly(vinylidene fluoride-co-hexafluopropylene) (PVDF-HFP) in dimethyl acetamide (DMAc) were investigated in terms of frequency and concentration. The effects of temperature on the intrinsic viscosity of the solutions were discussed. In dynamic rheological measurement, the concentrated solutions showed a little unexpected rheological response; as temperature was increased dynamic viscosity was increased and the solutions exhibited more noticeable Bingham body character over the temperature range, 30 to $70^{\circ}C$. In addition, the solution gave longer relaxation time, lower value of loss tangent and higher value of yield stress at higher temperature and at higher concentration. On the other hand, the dilute solutions revealed that intrinsic viscosity was decreased and its Huggins constant was increased with increasing temperature. These physical parameters suggested that the increase of viscosity with increasing temperature resulted from the localized gelation of PVDF-HFP due to reduced solubility to the solvent.