• Title/Summary/Keyword: the vertical motion

Search Result 1,139, Processing Time 0.026 seconds

Automated Image Alignment and Monitoring Method for Efficient Stereoscopic 3D Contents Production (스테레오스코픽 3D 콘텐츠 제작의 효율성 향상을 위한 자동 영상정렬 및 모니터링 기법)

  • Kim, Jae-In;Kim, Taejung
    • Journal of Broadcast Engineering
    • /
    • v.19 no.2
    • /
    • pp.205-214
    • /
    • 2014
  • Minimization of visual fatigue is important for production of high quality stereoscopic 3D contents. Vertical disparity of stereo images occurred during contents production is considered as the main factor of visual fatigue. To ensure correct stereoscopy vertical disparity needs to be eliminated. In this paper, a method for automated image alignment was proposed for Stereoscopic 3D contents generation and post-processing steps. The proposed method consists of two parts: rectification for image alignment and camera motion detection. The proposed method showed that its rectification performance was the most superior among the existing methods tested and that camera motion detection had a success rate of 98.35%. Through these evaluations, we confirmed that the proposed method can be effectively applied to 3D contents production.

Analytical Research of Topside Installation in Mating phase with Crane Vessel

  • Lee, Jong-Hyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.4
    • /
    • pp.1-6
    • /
    • 2011
  • The installation of a topside structure can be categorized into the following stages: start, pre-lifting, lifting, lifted, rotating, positioning, lowering, mating, and end of installation. The transfer of the module onto the floating spar hull occurs in the last three stages, from lowering to the end. The coupled multi-body motions are calculated in both calm water and in irregular waves with a significant wave height (1.52m). The effects of the hydrodynamic interactions between the heavy lifting vessel and the spar hull during the lowering and mating stages are considered. The internal forces caused by the load transfer and ballasting are derived for the mating phases. The results of the internal forces for the calm water condition are compared with those in the irregular sea condition. Although the effect of the pitch motion on the relative vertical motion between the deck of the floating structure and the topside module is significant in the mating phases, the internal force induced pitch motion is too small to have this influence. However, the effect of the internal force on the wave-induced heave responses in the mating phases is noticeable in the irregular sea condition because transfer mass-induced draught changes for the floating structure are observed to have higher amplitudes than the external force induced responses. The impacts of the module on the spar hull in the mating phase are investigated.

Flow Characteristics in a Particle/Bubble Motion with Hybride PIV (Hybride PIV에 의한 단일입자/기포운동에 관한 연구)

  • Choi, Hae-Man;Terauchi, T.;Monji, H.;Matsui, G.
    • The KSFM Journal of Fluid Machinery
    • /
    • v.5 no.1 s.14
    • /
    • pp.7-12
    • /
    • 2002
  • As the first step to investigate the fundamental mechanism of a dispersed two-phase flow, we studied the detailed interactions between bubble or particle motion and flow around it. Experiments were carried out with a rising bubble or particle in stagnant water in a vertical pipe. Particles with different densities, and/or different shapes were used for comparison with a bubble. We adopted 3D-PTV (Three-Dimensional Particle Tracking Velocimetry) for measuring the bubble or particle motions, and PIV (Particle Image Velocimetry) for measuring the water flow simultaneously (Hybrid PIV). The experimental results showed that the oblate spheroidal solid particle rose along the longer axis direction at the point that the inclination of the longer axis reached the maximum, and the inclination direction changed after moving. The bubble moved to the direction that the spheroid's projected width grew up to the largest, and the minor axis of the oblate spheroidal body of the bubble was parallel to the moving direction. The trajectory of the center of the particle/bubble which was measured with 3D-PTV, was marked on the section (x-y) of the pipe. It exhibited the pattern of the particle/bubble motion.

Effect of Task Direction on the Maximal Pushing, Pulling, Twisting, and Grip Forces

  • Yoon, Jangwhon
    • Journal of the Ergonomics Society of Korea
    • /
    • v.35 no.5
    • /
    • pp.413-423
    • /
    • 2016
  • Objective:The aims of this study are to understand the effects of task (pushing, pulling, and clockwise and counter clockwise twisting) direction on the maximal output and their grip forces and to explore the relationship between the maximal output and the grip forces. Background: Knowing the normative maximal grip force is not enough to design a good hand tool. The industrial designers should understand the required grip forces in various motions toward a specific direction to make an effective and efficient hand tool. Method: Eighteen healthy volunteers participated in the series of isometric maximal output force tests. A custom-made force measuring equipment collected the output and the grip forces for three seconds. Force measurements along the vertical, coronal and sagittal axes were randomly repeated three times. Results: The pulling was strongest and the pushing was weakest in all directions. The effect of motion on the output forces varied in different directions. The corresponding grip force increased in the order of pushing, pulling, clockwise twisting, and counter clockwise twisting in all directions. The maximal output and their grip forces were highly correlated but the relationship was affected by motion and direction. The regression coefficient was greatest in pulling and smallest in clockwise twisting. Conclusion: The effect of motion on the output forces varied in different directions. The maximal output and their grip forces were correlated but the relationship was affected by motion and direction. Application: Findings of this study can be valuable information for industrial designers to develop more productive hand tools and work stations to help preventing the musculoskeletal disorders at work.

On the Motion Characteristics of a Freely-Floating Sphere in a Water of Finite Depth (유한수심(有限水深)의 해상(海上)에서 규칙파(規則波)에 놓인 구(球)의 운동특성(運動特性))

  • Hang-Shoon,Choi;Sung-Kyun,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.19 no.1
    • /
    • pp.23-32
    • /
    • 1982
  • Herein the motion of a freely-floating sphere in a water of finite depth is analysed within the framework of a linear potential theory. A velocity potential describing fluid motion is generated by distributing pulsating sources and dipoles on the immersed surface of the sphere, without introducing an inner flow model. The potential becomes the solution of an integral equation of Fredholm's second type. In the light of the vertical axisymmetry of the flow, surface integrals reduce to line integrals, which are approximated by summation of the products of the integrand and the length of segments along the contour. Following this computational scheme the diffraction potential and the radiation potential are determined from the same algorithm of solving a set of simultaneous linear equations. Upon knowing values of the potentials hydrodynamic forces such as added mass, hydrodynamic damping and wave exciting forces are evaluated by the integrating pressure over the immersed surface of the sphere. It is found in the case of finite water depth that the hydrodynamic forces are much different from the corresponding ones in deep water. Accordingly motion response of the sphere in a water of finite depth displays a particular behavior both in a amplitude and phase.

  • PDF

Computational fluid dynamics simulation for tuned liquid column dampers in horizontal motion

  • Chang, Cheng-Hsin
    • Wind and Structures
    • /
    • v.14 no.5
    • /
    • pp.435-447
    • /
    • 2011
  • A Computational Fluid Dynamics model is presented in this study for the simulation of the complex fluid flows with free surfaces inside the Tuned Liquid Column Dampers in horizontal motion. The characteristics of the fluid model of the TLCD in horizontal motion include the free surface of the multiphase flow and the horizontal moving frame. In this study, the time depend unsteady Standard ${\kappa}-{\varepsilon}$ turbulent model based on Navier-Stokes equations is chosen. The volume of fluid (VOF) method and sliding mesh technique are adopted to track the free surface of water inside the vertical columns of TLCD and treat the moving boundary of the walls of TLCD in horizontal motion. Several model solution parameters comprising different time steps, mesh sizes, convergence criteria and discretization schemes are examined to establish model parametric independency results. The simulation results are compared with the experimental data in the dimensionless amplitude of the water column in four different configured groups of TLCDs with four different orifice areas. The predicted natural frequencies and the head loss coefficient of TLCDs from CFD model are also compared with the experimental data. The predicted numerical results agree well with the available experimental data.

Development of the DGRS enriched in the high frequency range for APR1400 (고진등수 영역이 보강된 APR1400 설계지반응답스펙트럼의 개발)

  • 장영선;김태영;주광호;김종학
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.09a
    • /
    • pp.67-74
    • /
    • 2001
  • This paper presents the Safe Shutdown Earthquake(SSE) input motion for the seismic design of the Advanced Power Reactor 1400(APR1400). The Design Ground Response Spectra(DGRS) far the SSE is based on the design spectrum specified in regulatory Guide(RG) 1.60 of U.S. Nuclear Regulatory Commission(US NRC), anchored to a Peak Ground Acceleration(PGA) of 0.3g and enriched in the high frequency range. This SSE seismic input motion is to be applied to the seismic analysis as the free-field seismic motion at the ground surface of both the rock and generic soil sites fur APRI1400. The enrichment for APR1400 seismic input motion is performed considering the current US NRC regulations, the seismic hazard studies performed by the Lawrence Livermore National Laboratory (LINL) and Electric Power Research Institute(EPRI) for the Central and Eastern United States nuclear power plant sites, and the seismic input motions used in the design certifications of the three existing U.S. advanced standard plants. It is represented by a set of DGRS and the accompanying Target Power Spectral Density(PSD) Function in both the horizontal and vertical directions.

  • PDF

Micropositioning of a Linear Motion Table with Magnetic Bearing Suspension (자기 베어링으로 지지 되는 직선운동 테이블의 초정밀 위치제어에 관한 연구)

  • 김의석;안형준;장인배;한동철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.466-469
    • /
    • 1995
  • This paper presents a design and performance of the 6 D.O.F linear motion table with a magnetic bearing suspension. The linear positioning of the table with a 150mm stroke is driven by a brushless DC Linear motor and the other attitudes of the stage are controlled by the analog PD controller with magnetic bearing actuators. Each magnetic bearing unit which consists of 3 electromagnets, 3 capacitance probes and 3 backup bearings affords controlled forces by detecting the air gap between the probes and guideways. An integral type capacitance probe amplifier is equipped on the upper plate of the table so that the probe line to the probe amplifier can be shorter therefore the problems due to the stray capacitance and noise can be reduced. Form the pitch-yaw errormeasured by the autocollimator, the vertical and horizont straightness errors of the table are derived that they are maintained below 1.mu. m over 100mm stroke. The positioning accuracy of the linear motion is maintained below 2 .mu. m and the repeatability error is below 1 .mu. m

  • PDF

Optimal Design of the 4-cylinder Engine Rubber Mounts with Elastic Vibrations of Vehicle Body (차체의 탄성진동을 고려한 4기통 엔진 고무마운트의 최적설계)

  • 박철희;오진우
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.1
    • /
    • pp.163-181
    • /
    • 1998
  • In this study, the objective is determine the optimal design variable of engine mount system using the rubber mount of bush-type which is usually utilized in passive control to minimize vibrations of vehicle body or transmission from engine into body. The engine model adopted in this study is 4-cylinder, 4-stroke gasoline engine support- ed by 4-points. The system is modelled in 10 d.o.f.-rigid body motion of the engine & transmission in 6 d.o.f., elastic motion of vehicle body in 4 d.o.f.(1st torsional, 1st vertical and 1st & 2nd lateral bending vibration mode). To consider the elastic motion of vehicle body, find the eigenvalues and mode shapes of vehicle body by nodal testing and then determine the modal masses and stiffnesses of the body. The design variables of the engine mount system are locations, stiffness and damping coefficients of the rubber mounts(28 design variables). In case of considering the torque-roll axis for the engine, the design variables of the mount system are reduced to 22 design variables. The objective functions in optimal design process are considered by three cases, that is, 1) transmitted forces through engine mounts, 2) acceleration components of generalized coordinates for the vibration of vehicle body, 3) acceleration of specified location(where gear box) of body. three case are analyzed and compared with each other.

  • PDF

Experimental and Numerical Study on the Effects of Bow Deck Shape on the Green Water (선수갑판형상이 갑판침입수에 미치는 영향에 관한 실험 및 수치적 연구)

  • Jeong, Kwang-Leol;Lee, Young-Gill;Ha, Yoon-Jin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.50 no.5
    • /
    • pp.273-281
    • /
    • 2013
  • In this paper, the effects of bow deck shape on the green water are studied by numerical and experimental method. Varying the deck shapes to triangular, elliptic and circular, the thickness and advancing velocity of green water leading edge are compared using numerical method. Also the motion, the pressure on the vertical wall and the height on the deck of green water are compared among the three bow deck shapes in the heave and pitch motion free condition by experimental method. To remove the effects of the difference of motions among the deck shapes, numerical simulations are performed varying the deck shape with the same motion. In the same motion condition, smallest impulsive pressure occurred in the condition of elliptic deck shape.