• 제목/요약/키워드: the vertical motion

검색결과 1,134건 처리시간 0.031초

Elastic Wave Propagation in Monoclinic System Due to Transient Line Load

  • Kim, Yong-Yun
    • The Journal of the Acoustical Society of Korea
    • /
    • 제17권2E호
    • /
    • pp.53-58
    • /
    • 1998
  • In this paper, we study the response of several anisotropic systems to buried transient line loads. The problem is mathematically formulated based on the equations of motion in the constitutive relations. The load is in form of a normal stress acting with arbitrary axis on the plane of monoclinic symmetry. Plane wave equation is coupled with vertical shear wave, longitudinal wave and horizontal shear wave. We first considered the equation of motion in reference coordinate system, where the line load is coincident with symmetry axis of the orthotrioic material. Then the equation of motion is transformed with respect to general coordiante system with azimuthal angle by using transformation tensor. The load is first described as a body force in the equations of the motion for the infinite media and then it is mathematically characterized. Subsequently the results for semi-infinite spaces is also obtained by using superposition of the infinite medium solution together with a scattered solution from the free surface. Consequently explicit solutions for the displacements are obtained by using Cargniard-DeHoop contour. Numerical results which are drawn from concrete examples of orthotropic material belonging to monoclinic symmetry are demonstrated.

  • PDF

유연한 XY 위치결정 시스템을 위한 강인 동작 제어기 설계 (Robust Motion Controller Design for Flexible XY Positioning Systems)

  • 김봉근;박상덕;정완균;염영일
    • 제어로봇시스템학회논문지
    • /
    • 제9권1호
    • /
    • pp.82-89
    • /
    • 2003
  • A robust motion control method is proposed fur the point-to-point position control of a XY positioning system which consists of a base cart, elastic ben and moving mass. The horizontal motion controller consists of the feedforward controller to suppress the single mode vibration of the elastic beam and the feedback controller to get the high-accuracy positioning performance of the base cart. Input preshaping vibration suppression method based on system modeling with analytic frequency equation is proposed and integrated into the robust internal-loop compensator(RIC) to increase the robustness of the whole closed-loop system The vertical motion controller is proposed based on the dual RIC structure. Through experiments, it is shown that the proposed method can stabilize the system and suppress the vibration in the presence of uncertainties and disturbances.

상지 재활을 위한 3-D 로봇 시스템의 개발 (Development of a 3-D Rehabilitation Robot System for Upper Extremities)

  • 신규현;이수한
    • 한국정밀공학회지
    • /
    • 제26권4호
    • /
    • pp.64-71
    • /
    • 2009
  • A 3-D rehabilitation robot system is developed in this paper. The robot system is for the rehabilitation of upper extremities, especially the shoulder and elbow joints, and has 3-D workspace for enabling occupational therapy to recover physical functions in activities of daily living(ADL). The rehabilitation robot system, which is driven by actuators, has 1 DOF in horizontal rotational motion and 2 DOF in vertical rotational motion, where all actuators are set on the ground. Parallelogram linkage mechanisms lower the equivalent inertia of the control elements as well as control forces. Also the mechanisms have high mechanical rigidity for the end effector and the handle. Passive motion mode experiments have been performed to evaluate the proposed robot system. The results of the experiments show and excellent performance in simulating spasticity of patients.

Numerical study on the effects of seismic torsional component on multistory buildings

  • Ouazir, Abderrahmane;Hadjadj, Asma;Benanane, Abdelkader
    • Earthquakes and Structures
    • /
    • 제13권1호
    • /
    • pp.9-15
    • /
    • 2017
  • In this paper, the influence of the rotational component, about a vertical axis, of earthquake ground motion on the response of building structures subjected to seismic action is considered. The torsional component of ground motion is generated from the records of translational components. Torsional component of ground motion is then, together with translational components, applied in numerical linear dynamic analysis of different reinforced concrete framed structure of three stories buildings. In total, more than 40 numerical models were created and analyzed. The obtained results show clearly the dependence of the effects of the torsional seismic component on structural system and soil properties. Thus, the current approach in seismic codes of accounting for the effects of accidental torsion due to the torsional ground motion, by shifting the center of mass, should be reevaluated.

파랑중 최소수선면적 쌍동선(SWATH)의 운동제어 (Motion Control of a SWATH Ship in Waves)

  • 이판묵;이상무;홍사영;홍도천
    • 한국기계연구소 소보
    • /
    • 통권17호
    • /
    • pp.157-165
    • /
    • 1987
  • The SWATH concept hull form which is capable of high speed navigation with small oscillatory motions in waves, was developed from the catamaran type hull forms. This paper describes how the motion of a SWATH ship in irregular waves can be reduced by regulating the stabilizing fins. The optimal regulator and LQG (Linear Quadratic Gaussian) controller for vertical plane motion have been applied for both platforming mode and contouring mode controls. The calculations of hydrodynamic coefficients and external forces are possible for defining the system equation for the design purpose of motion control. Performances of the controlled system are compared with those of original system.

  • PDF

가감속 형태에 叫른 운동오차의 영향에 대한 연구 (A Study on the Effects of Motion Errors for Acceleration/Deceleration Types)

  • 신동수;곽경남;정성종
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 추계학술대회 논문집
    • /
    • pp.671-677
    • /
    • 1996
  • This paper proposes a study on the effects of motion errors for acceleration/ deceleration types. The proposed motion errors are consisted of two errors : one due to transient response of servomechanism and the other due to gain mismatching of positioning servo motor. They are derived from using laplace transformation for the block diagram of general purpose feed drive system. In order to minimize them, the paper proposes second order polynomial regression model by using orthogonal array method which describes one of experimental methodolgies. The validity and reliability of the study was veri lied on a vertical machining center equipped with FANUC 0MC through a series of experiments and analyses.

  • PDF

서보모터의 가감속형태에 따른 운도오차에 관한 연구 (A study on motion errors due to acceleration and deceleration types of servo motors)

  • 신동수;정성종
    • 대한기계학회논문집A
    • /
    • 제21권10호
    • /
    • pp.1718-1729
    • /
    • 1997
  • This paper describes motion errors due to acceleration and deceleration types of servo motors in NC machine tools. Motion errors are composed of two components : one is due to transient response of a servomechanism and the other comes from gain mismatching of positioning servo motors. It deals with circular interpolation to identify motion errors by using Interface card. Also in order to minimize motion errors, this study presents an effective method to optimize parameters which are connected with motion errors. The proposed method is based upon a second order polynomial regression model and it includes an orthogonal array method to make the effective results of experiments. The validity and reliability of the study were verified on a vertical machining center equipped with FANUC 0MC through a series of experiments and analysis.

선수 규칙파 중 단동 활주선의 연직면 거동 추정 - Zarnick 비선형 스트립 방법의 개선 (Theoretical Prediction of Vertical Motion of Planing Monohull in Regular Head Waves - Improvement of Zarnick's Nonlinear Strip Method)

  • 장양;염덕준;김동진
    • 한국해양공학회지
    • /
    • 제29권3호
    • /
    • pp.217-223
    • /
    • 2015
  • In order to predict the motions of a planing hull in waves, it is necessary to accurately estimate the force components acting on the hull such as the hydrodynamic force, buoyancy, and friction, as well as the wave exciting force. In particular, based on strip theory, hydrodynamic forces can be estimated by the summation of the forces acting on each cross-section of the hull. A non-linear strip method for planing hulls was mathematically developed by Zarnick, and his formula has been used to predict the vertical motions of prismatic planing hulls in regular waves. In this study, several improvements were added to Zarnick's formula to predict the vertical motions of warped planing hulls. Based on calm water model test results, the buoyancy force and moment correction coefficients were modified. Further improvements were made in the pile-up correction. Pile-up correction factors were changed according to variations of the deadrise angles using the results found in previous research. Using the same hull form, captive model tests were carried out in other recent research, and the results were compared with the present calculation results. The comparison showed reasonably good agreements between the model tests and present calculations.

대기오염물질의 연직 수송에 미치는 전선의 역할 II: MM5를 이용한 3차원 연직 수송 실험 (The Role of Fronts on the Vertical Transport of Atmospheric Pollutants II: Vertical transport experiment using MM5)

  • 남재철;황승언;박순웅
    • 대기
    • /
    • 제14권4호
    • /
    • pp.3-18
    • /
    • 2004
  • Neglecting the vertical transport from the surface, most of the previous studies on the long-range transport of pollutants have only considered the horizontal transport caused by the free atmosphere wind. I used a three dimensional numerical model, MM5 (The fifth generation Penn State Univ./NCAR Mesoscale Model) for the simulation of vertical transport of pollutants and investigated the mechanism of the vertical transport of atmospheric pollutants between planetary boundary layer(PBL) and free atmosphere by fronts. From the three dimensional simulation of MM5, the amount of pollutants transport from PBL to free atmosphere is 48% within 18 hour after the development of front, 55% within 24 hour, and 53% within 30 hour. The ratios of the vertically transported pollutant for different seasons are 62%, 60%, 54%, and 43% for spring, summer, fall, and winter, respectively. The most active areas for the vertical transport are the center of low pressure and the warm sector located east side of cold front, in which the strong upward motion slanted northward occurs. The horizontal advection of pollutants at the upper level is stronger than at the lower level simply because of the stronger wind speed. The simulation results shows the well known plum shape distribution of pollutants. The high concentration area is located in the center and north of the low pressure system, while the second highest concentration area is in the warm sector. It is shown that the most important mechanism for the vertical transport is vertical advection, while the vertical diffusion process plays an important role in the redistribution of pollutants in the PBL.

Countermovement Jump Strategy Changes with Arm Swing to Modulate Vertical Force Advantage

  • Kim, Seyoung
    • 한국운동역학회지
    • /
    • 제27권2호
    • /
    • pp.141-147
    • /
    • 2017
  • Objective: We obtained force-displacement curves for countermovement jumps of multiple heights and examined the effect of an arm swing on changes in vertical jumping strategy. Countermovement jumps with hands on hips (Condition 1) and with an arm swing (Condition 2) were evaluated to investigate the mechanical effect of the arm movement on standing vertical jumps. We hypothesized that the ground reaction force (GRF) and/or center of mass (CoM) motion resulting from the countermovement action would significantly change depending on the use of an arm swing. Method: Eight healthy young subjects jumped straight up to five different levels ranging from approximately 10% (~25 cm) to 35% (~55 cm) of their body heights. Each subject performed five sets of jumps to five randomly ordered vertical elevations in each condition. For comparison of the two jumping strategies, the characteristics of the boundary point on the force-displacement curve, corresponding to the vertical GRF and the CoM displacement at the end of the countermovement action, were investigated to understand the role of arm movement. Results: Based on the comparison between the two conditions (with and without an arm swing), the subjects were grouped into type A and type B depending on the change observed in the boundary point across the five different jump heights. For both types (type A and type B) of vertical jumps, the initial vertical force at the start of push-off significantly changed when the subjects employed arm movement. Conclusion: The findings may imply that the jumping strategy does change with the inclusion of an arm swing, predominantly to modulate the vertical force advantage (i.e., the difference between the vertical force at the start of push-off and the body weight).