• Title/Summary/Keyword: the strength parameters

Search Result 3,610, Processing Time 0.034 seconds

Charts for estimating rock mass shear strength parameters

  • Wan, Ling;Wei, Zuoan;Shen, Jiayi
    • Geomechanics and Engineering
    • /
    • v.10 no.3
    • /
    • pp.257-267
    • /
    • 2016
  • Charts are used extensively in slope practical application to meet the need of quick assessment of rock slope design. However, Charts for estimating the shear strength of the rock mass of a slope are considerably limited. In this paper, based on the Hoek-Brown (HB) criterion which is widely used in rock slope engineering, we present charts which can be used to estimate the Mohr-Coulomb (MC) parameters angle of friction ${\phi}$ and cohesion c for given slopes. In order to present the proposed charts, we firstly present the derivation of the theoretical relationships between the MC parameters and ${\sigma}_{ci}/({\gamma}H)$ which is termed the strength ratio (SR). It is found that the values of $c/{\sigma}_{ci}$ and ${\phi}$ of a slope depend only on the magnitude of SR, regardless of the magnitude of the individual parameters ${\sigma}_{ci}$(uniaxial compressive strength), ${\gamma}$(unit weight) and H (slope height). Based on the relationships between the MC parameters and SR, charts are plotted to show the relations between the MC parameters and HB parameters. Using the proposed charts can make a rapid estimation of shear strength of rock masses directly from the HB parameters, slope geometry and rock mass properties for a given slope.

Effect of Shape Parameters of Tool on Improvement of Joining Strength in Clinching (클린칭 접합력 향상을 위한 금형 형상변수의 영향도 평가)

  • Kim, J.Y.;Lee, C.J.;Lee, S.K.;Ko, D.C.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.18 no.5
    • /
    • pp.392-400
    • /
    • 2009
  • Clinching is a method of joining sheet metals together. This process can be substituted for the resistance spot welding on the joining of aluminum alloys. However, the joining strength of the clinching is lower than that of welding and riveting. The objective of this paper is to evaluate the effect of shape parameters of tools on the joining strength of the clinching and to optimize clinching tools. Twelve parameters have been selected as shape parameters on the clinching tools such as punch and die. The design of experiments (DOE) method is employed to investigate the effect of the shape parameters of tools on the joining strength of the clinching. The neck thickness and undercut of the clinched sheet metal after the clinching, and the separation load at detaching are estimated from the result of FEA using DEFORM. Optimal combination of shape parameters to maximize the joining strength of clinching is determined on the basis of the result of DOE and FEA. In order to validate the result of DOE and FEA, the experiment of clinching is performed for the optimal combination of shape parameters. It is shown from the result of the experiment that optimization of shape parameters improves the joining strength of clinching.

Influence of Process Parameters on the Breathable Film Strength of Polymer Extrusion (고분자압출의 공정변수가 통기성필름강도에 미치는 영향)

  • Choi, Man-Sung
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.4
    • /
    • pp.625-632
    • /
    • 2012
  • Optimization of process parameters in polymer extrusion is an important task to reduce manufacturing cost. To determine the optimum values of the process parameters, it is essential to find their influence on the strength of polymer breathable thin film. The significance of six important process parameters namely, extruder cylinder temperature, extruder speed, extruder dies temperature, cooling roll temperature, stretching ratio, stretching roll temperature on breathable film strength of polymer extrusion was determined. Moreover, this paper presents the application of Taguchi method and analysis of variance (ANOVA) for maximization of the breathable film strength influenced by extrusion parameters. The optimum parameter combination of extrusion process was obtained by using the analysis of signal-to-noise ratio. The conclusion revealed that extruder speed and stretching ratio were the most influential factor on the film strength, respectively. The best results of film strength were obtained at higher extruder speed and stretching ratio.

Case Studies on Determination of Strength Parameters for the Analysis of Rock Slope Stability (암반사면 안정 해석을 위한 강도정수 산정 사례연구)

  • Kim, Hak Joon;Jeong, Jun-Ho
    • The Journal of Engineering Geology
    • /
    • v.30 no.1
    • /
    • pp.85-101
    • /
    • 2020
  • The estimation of strength parameters is very important for the stability analysis of rock slopes. Various methods for the determination of strength parameters were suggested by various researchers. The number of methods used for the estimation of strength parameters in the stability analysis of rock slopes were investigated based on literature reviews. The frequency of the method determining strength parameters were investigated with respect to failure types. The cohesion and friction angles of the rock and discontinuities are presented with RMR values. The cohesion shows wider range of values relative to those of friction angles according to current studies. Even though RMR does not show any correlation with cohesion values, RMR and the friction angle of the rock clearly shows a positive relationship. Proper methods should be utilized for the determination of strength parameters with consideration for failure types and be proved through literature reviews. The credibility of determining strength parameters is expected to improve if strength parameters data are accumulated from the back analysis performed for failed local rock slopes.

Estimation of seismic effective energy based parameter

  • Nemutlu, Omer Faruk;Sari, Ali;Balun, Bilal
    • Structural Engineering and Mechanics
    • /
    • v.82 no.6
    • /
    • pp.785-799
    • /
    • 2022
  • The effect of earthquakes in earthquake resistant structure design stages is influenced by the highest ground acceleration value, which is generally a strength-based approach in seismic codes. In this context, an energy-oriented approach can be suggested as an alternative to evaluate structure demands. Contrary to the strength-based approach, the strength and displacement demands of the structure cannot be evaluated separately, but can be evaluated together. In addition, in the energy-oriented approach, not only the maximum effects of earthquakes are taken into account, but also the duration of the earthquake. In this respect, it can be said that the use of energy-oriented earthquake parameters is a more rational approach besides being an alternative. In this study, strength and energy-oriented approaches of earthquake parameters of 11 different periods of single degree of freedom systems were evaluated over 28 different earthquake situations. The energy spectra intended to be an alternative to the traditional acceleration spectra were created using the acceleration parameter equivalent to the input energy. Two new energy parameters, which take into account the effective duration of the earthquake, are proposed, and the relationship between the strength-oriented spectral acceleration parameters and the energy parameters used in the literature is examined by correlation study. According to the results obtained, it has been seen that energy oriented earthquake parameters, which give close values in similar period situations, will be a good alternative to strength oriented earthquake parameters. It was observed that the energy parameters were affected by the effective duration of the earthquake, unlike the strength-based parameters. It has been revealed that the newly proposed energy parameters considering the effective duration give good correlations. Finally, it was concluded that the energy parameters can be used in the design, and the newly proposed effective energy parameters can shorten the analysis durations.

Statistical division of compressive strength results on the aspect of concrete family concept

  • Jasiczak, Jozef;Kanoniczak, Marcin;Smaga, Lukasz
    • Computers and Concrete
    • /
    • v.14 no.2
    • /
    • pp.145-161
    • /
    • 2014
  • The article presents the statistical method of grouping the results of the compressive strength of concrete in continuous production. It describes the method of dividing the series of compressive strength results into batches of statistically stable strength parameters at specific time intervals, based on the standardized concept of "concrete family". The article presents the examples of calculations made for two series of concrete strength results, from which sets of decreased strength parameters were separated. When assessing the quality of concrete elements and concrete road surfaces, the principal issue is the control of the compressive strength parameters of concrete. Large quantities of concrete mix manufactured in a continuous way should be subject to continuous control. Standardized approach to assessing the concrete strength proves to be insufficient because it does not allow for the detection of subsets of the decreased strength results, which in turn makes it impossible to make adjustments to the concrete manufacturing process and to identify particular product or area on site with decreased concrete strength. In this article two independent methods of grouping the test results of concrete with statistically stable strength parameters were proposed, involving verification of statistical hypothesis based on statistical tests: Student's t-test and Mann - Whitney - U test.

Dependence of Weibull parameters on the diameter and the internal defects of Tyranno ZMI fiber in the strength analysis

  • Morimoto, Tetsuya;Yamamoto, Koji;Ogihara, Shinji
    • Advanced Composite Materials
    • /
    • v.16 no.3
    • /
    • pp.245-258
    • /
    • 2007
  • The single-modal Weibull model has been assessed on Tyranno ZMI Si-Zr-C-O fiber if a set of shape and scale parameters accurately reproduced the effect of the size of the diameter on strength. The tensile data of a single fiber have been divided into two expedient groups as 'small diameter' group and 'large diameter' group in deriving the parameters, which should be consistent if the Weibull model accurately reproduced the size effect. However, the derived Weibull parameters were inconsistent between the two groups. Thereby the authors have concluded that the parameters of the single-modal Weibull model are dependent on the fiber diameter, so that the model is inadequate to reproduce the strength size effect. On the other hand, Weibull parameters were found consistent between the two groups by excluding the data of 'large mirror zone' sample, which was defined as the sample around 10% mirror zone area of the fracture surface. What is more, the exclusion reduced the strength variance more drastically in the 'large diameter' group than in the 'small diameter' group, even though the 'large mirror zone' samples were found identical in the percentage between the two groups. The authors therefore conclude that diameter limitation to the 'small diameter' group level can lead to drastically less distributed strength values than the estimated strength through the Weibull scaling on the present Tyranno ZMI Si-Zr-C-O fiber.

The statistical two-order and two-scale method for predicting the mechanics parameters of core-shell particle-filled polymer composites

  • Han, Fei;Cui, Junzhi;Yu, Yan
    • Interaction and multiscale mechanics
    • /
    • v.1 no.2
    • /
    • pp.231-250
    • /
    • 2008
  • The statistical two-order and two-scale method is developed for predicting the mechanics parameters, such as stiffness and strength of core-shell particle-filled polymer composites. The representation and simulation on meso-configuration of random particle-filled polymers are stated. And the major statistical two-order and two-scale analysis formulation is briefly given. The two-order and two-scale expressions for the strains and stresses of conventionally strength experimental components, including the tensional or compressive column, the twist bar and the bending beam, are developed by means of their classical solutions with orthogonal-anisotropic coefficients. Then a new effective mesh generation algorithm is presented. The mechanics parameters of core-shell particle-filled polymer composites, including the expected stiffness parameters, minimum stiffness parameters, and the expected elasticity limit strength and the minimum elasticity limit strength, are defined by means of the stiffness coefficients and elasticity strength criterions for core, shell and matrix. Finally, the numerical results for predicting both stiffness and elasticity limit strength parameters are compared with the experimental data.

Concrete Stress Block Parameters for High-Strength Concrete : Recent Developments and Their Impact

  • Bae, Sun-Gjin
    • International Journal of Concrete Structures and Materials
    • /
    • v.18 no.1E
    • /
    • pp.11-16
    • /
    • 2006
  • The use of the current ACI 318 stress block parameters has been reported to provide unconservative estimations of the moment capacities for high-strength concrete columns. Accordingly, several concrete stress block parameters have been recently proposed. This paper discusses various concrete stress block parameters for high-strength concrete and their influences on the code provisions. In order to adopt the proposed stress block parameters to the design code, it is necessary to understand the impact of the change of the stress block parameters on various aspects of the code provisions. For this purpose, the influence of using of different stress block parameters on the location of the neutral axis and the tensile strain in extreme tension steel as well as the axial and moment capacities are investigated. In addition, the influence on the prestressed concrete members is also elucididated.

A Study on the Strength Parameters of Cut Slopes on the National Highway (일반국도상 절토사면 강도정수에 관한 연구)

  • Rhee, Jong-Hyun;Kim, Seung-Hyun;Kim, Jin-Hwan;Lee, Jeong-Yeob;Koo, Ho-Bon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1050-1056
    • /
    • 2008
  • Many cut slopes are situated on national highways. In this study, we chose rock slopes of moderated weathering grade to analyze general strength parameters of cut slopes. We analyzed the strength parameters of selected rock slopes by the experience method. Also, we arranged the strength parameters by area and rock types.

  • PDF