• Title/Summary/Keyword: the sliding mode

Search Result 1,576, Processing Time 0.033 seconds

Improvement of Dynamic Response for IPMSM based on DTC-CFTC Using Sliding Mode Control (일정 스위칭 주파수를 가지는 DTC 기반 IPMSM의 슬라이딩 모드 제어를 이용한 속응성 향상)

  • Han, Byeol;Bak, Yeongsu;Lee, Kyo-Beum
    • Journal of IKEEE
    • /
    • v.23 no.2
    • /
    • pp.628-635
    • /
    • 2019
  • This paper proposes sliding mode control (SMC) method for improvement of dynamic response for IPMSM based on DTC with constant switching frequency. DTC with constant switching frequency method consists of PI torque controller and triangular comparator for constant torque error status. It has the poor dynamic response compared to conventional DTC. This paper proposes improvement method of dynamic response of DTC with constant switching frequency by using SMC. Simulation results confirm the effectiveness of the proposed method.

Control of Quadrotor UAV Using Adaptive Sliding Mode with RBFNN (RBFNN을 가진 적응형 슬라이딩 모드를 이용한 쿼드로터 무인항공기의 제어)

  • Han-Ho Tack
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.23 no.4
    • /
    • pp.185-193
    • /
    • 2022
  • This paper proposes an adaptive sliding mode control with radial basis function neural network(RBFNN) scheme to enhance the performance of position and attitude tracking control of quadrotor UAV. The RBFNN is utilized on the approximation of nonlinear function in the UAV dynmic model and the weights of the RBFNN are adjusted online according to adaptive law from the Lyapunov stability analysis to ensure the state hitting the sliding surface and sliding along it. In order to compensate the network approximation error and eliminate the existing chattering problems, the sliding mode control term is adjusted by adaptive laws, which can enhance the robust performance of the system. The simulation results of the proposed control method confirm the effectiveness of the proposed controller which applied for a nonlinear quadrotor UAV is presented. Form the results, it's shown that the developed control system is achieved satisfactory control performance and robustness.

Design of a Sliding Mode controller with Self-tuning Boundary Layer (경계층이 자동으로 조정되는 슬라이딩 모우드 제어기의 설계)

  • 최병재;곽성우;김병국
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.6 no.2
    • /
    • pp.3-12
    • /
    • 1996
  • Sliding mode controller(SMC) is a simple but powerful nonlinear controller, because it guarantees the stability and the robustness. However, it leads to the high frequency chattering of the control input. Although the phenomenon can be avoided by introducing a thin boundary layer to the sliding surface, the method results in a steady state: error proportional to the boundary layer thickness. In this paper, we proposed a new sliding mode controller with self-tuning the thickness of a boundary layer. It uses a fuzzy rule base for tuning the thickness of a boundary layer. That is, the thickness is increased to some degree to reject a discontinuous control input at the initial state and then it is decreased as the states approaches to the steady states for improving the tracking performance. In order to assure the control performance, we perf'ormed the computer simulation using an inverted pendulum system as a controlled plant.

  • PDF

Attitude Control of A Two-wheeled Mobile Manipulator by Using the Location of the Center of Gravity and Sliding Mode Controller (무게중심위치와 슬라이딩 모드 제어를 통한 이륜형 모바일 머니퓰레이터의 자세제어)

  • Kim, Min-Gyu;Woo, Chang-Jun;Lee, Jangmyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.8
    • /
    • pp.758-765
    • /
    • 2015
  • This paper proposes an attitude control system to keep the balance for a two-wheeled mobile manipulator which consists of a mobile platform and a three D.O.F. manipulator. In the conventional control scheme, complicated dynamics of the manipulator need to be derived for balancing control of a mobile manipulator. The method proposed in this paper, however, three links are considered as one body of mass and the dynamics are derived easily by using an inverted pendulum model. One of the best advantage of a sliding mode controller is low sensitivity to plant parameter variations and disturbances, which eliminates the necessity of exact modeling to control the system. Therefore the sliding mode control algorithm has been adopted in this research for the attitude control of mobile platform along the pitch axis. The center of gravity for the whole mobile manipulator is changing depending on the motion of the manipulator. And the orientation variation of center of gravity is used as reference input for the sliding mode controller of the pitch axis to maintain the center of gravity in the middle of robot to keep the balance for the robot. To confirm the performance of controller, MATLAB Simulink has been used and the resulting algorithms are applied to a real robot to demonstrate the superiority of the proposed attitude control.

Continuous Sliding Mode Control for Permanent Magnet Synchronous Motor Speed Regulation Systems Under Time-Varying Disturbances

  • Wang, Huiming;Li, Shihua;Yang, Jun;Zhou, XingPeng
    • Journal of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.1324-1335
    • /
    • 2016
  • This article explores the speed regulation problem of permanent magnet synchronous motor (PMSM) systems subjected to unknown time-varying disturbances. A continuous sliding mode control (CSMC) technique is introduced for the speed loop to enhance the robustness of PMSM systems and eliminate the chattering phenomenon caused by high-frequency switch function in the conventional control law. However, the high control gain of the CSMC law in the presence of strong disturbances leads to large steady-state speed fluctuations for PMSM systems. In many application fields, PMSM systems are affected by time-varying disturbances instead of constant disturbances. For example, electric bicycles are usually affected by changing environmental disturbances, including wind speeds, road conditions, etc. These disturbances may be in the form of constant, ramp, and parabolic disturbances. Hence, a generalized proportional integral (GPI) observer is employed to estimate these types of disturbances. Then, the disturbance estimation method and the aforementioned CSMC method are combined to establish a composite sliding mode control method called the CSMC+GPI method for the speed loop of PMSM systems. Contrary to the conventional sliding mode control technique, the proposed method completely eliminates the chattering phenomenon caused by the switching function in the conventional control law. Moreover, a small control gain for the CSMC+GPI method is chosen by feed-forwarding estimated values to the speed controller. Hence, the steady-state speed fluctuations are small. The effectiveness of the proposed control scheme is verified by simulation and experimental result.

An Adaptive Complementary Sliding-mode Control Strategy of Single-phase Voltage Source Inverters

  • Hou, Bo;Liu, Junwei;Dong, Fengbin;Mu, Anle
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.168-180
    • /
    • 2018
  • In order to achieve the high quality output voltage of single-phase voltage source inverters, in this paper an Adaptive Complementary Sliding Mode Control (ACSMC) is proposed. Firstly, the dynamics model of the single-phase inverter with lumped uncertainty including parameter variations and external disturbances is derived. Then, the conventional Sliding Mode Control (SMC) and Complementary Sliding Mode Control (CSMC) are introduced separately. However, when system parameters vary or external disturbance occurs, the controlling performance such as tracking error, response speed et al. always could not satisfy the requirements based on the SMC and CSMC methods. Consequently, an ACSMC is developed. The ACSMC is composed of a CSMC term, a compensating control term and a filter parameters estimator. The compensating control term is applied to compensate for the system uncertainties, the filter parameters estimator is used for on-line LC parameter estimation by the proposed adaptive law. The adaptive law is derived using the Lyapunov theorem to guarantee the closed-loop stability. In order to decrease the control system cost, an inductor current estimator is developed. Finally, the effectiveness of the proposed controller is validated through Matlab/Simulink and experiments on a prototype single-phase inverter test bed with a TMS320LF28335 DSP. The simulation and experimental results show that compared to the conventional SMC and CSMC, the proposed ACSMC control strategy achieves more excellent performance such as fast transient response, small steady-state error, and low total harmonic distortion no matter under load step change, nonlinear load with inductor parameter variation or external disturbance.

Robust Impedance Control Using Robot Using ISMC and Backstepping in Flexible Joint Robot (ISMC와 백스테핑을 이용한 유연관절로봇의 강인한 임피던스제어)

  • Kwon, Sung-Ha;Park, Seung-kyu;Kim, Min-chan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.3
    • /
    • pp.643-650
    • /
    • 2017
  • The control of flexible joint robot is getting more attentions because its applications are more frequently used for robot systems in these days. This paper proposes a robust impedance controller for the flexible joint robot by using integral sliding mode control and backstepping control. The sliding mode control decouple disturbances completely but requires matching condition for disturbances. The dynamic model of flexible joint robot is divided into motor side and link side and the disturbance of the link side does not satisfy matching condition and cannot be decoupled directly by the actual input in the motor side. To overcome this difficulty, backstepping control technique is used with sliding mode control. The mismatched disturbance in the link side is changed into matched one in the respect to virtual control input which is the state controlled by actual input in the motor side. Integral sliding mode control is used to preserve the impedance control performance and the improved robustness at the same time.

Impedance Control of Flexible Base Mobile Manipulator Using Singular Perturbation Method and Sliding Mode Control Law

  • Salehi, Mahdi;Vossoughi, Gholamreza
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.5
    • /
    • pp.677-688
    • /
    • 2008
  • In this paper, the general problem of impedance control for a robotic manipulator with a moving flexible base is addressed. Impedance control imposes a relation between force and displacement at the contact point with the environment. The concept of impedance control of flexible base mobile manipulator is rather new and is being considered for first time using singular perturbation and new sliding mode control methods by authors. Initially slow and fast dynamics of robot are decoupled using singular perturbation method. Slow dynamics represents the dynamics of the manipulator with rigid base. Fast dynamics is the equivalent effect of the flexibility in the base. Then, using sliding mode control method, an impedance control law is derived for the slow dynamics. The asymptotic stability of the overall system is guaranteed using a combined control law comprising the impedance control law and a feedback control law for the fast dynamics. As first time, base flexibility was analyzed accurately in this paper for flexible base moving manipulator (FBMM). General dynamic decoupling, whole system stability guarantee and new composed robust control method were proposed. This proposed Sliding Mode Impedance Control Method (SMIC) was simulated for two FBMM models. First model is a simple FBMM composed of a 2 DOFs planar manipulator and a single DOF moving base with flexibility in between. Second FBMM model is a complete advanced 10 DOF FBMM composed of a 4 DOF manipulator and a 6 DOF moving base with flexibility. This controller provides desired position/force control accurately with satisfactory damped vibrations especially at the point of contact. This is the first time that SMIC was addressed for FBMM.

Kinematic Model based Predictive Fault Diagnosis Algorithm of Autonomous Vehicles Using Sliding Mode Observer (슬라이딩 모드 관측기를 이용한 기구학 모델 기반 자율주행 자동차의 예견 고장진단 알고리즘)

  • Oh, Kwang Seok;Yi, Kyong Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.10
    • /
    • pp.931-940
    • /
    • 2017
  • This paper describes a predictive fault diagnosis algorithm for autonomous vehicles based on a kinematic model that uses a sliding mode observer. To ensure the safety of autonomous vehicles, reliable information about the environment and vehicle dynamic states is required. A predictive algorithm that can interactively diagnose longitudinal environment and vehicle acceleration information is proposed in this paper to evaluate the reliability of sensors. To design the diagnosis algorithm, a longitudinal kinematic model is used based on a sliding mode observer. The reliability of the fault diagnosis algorithm can be ensured because the sliding mode observer utilized can reconstruct the relative acceleration despite faulty signals in the longitudinal environment information. Actual data based performance evaluations are conducted with various fault conditions for a reasonable performance evaluation of the predictive fault diagnosis algorithm presented in this paper. The evaluation results show that the proposed diagnosis algorithm can reasonably diagnose the faults in the longitudinal environment and acceleration information for all fault conditions.

Fault Tolerant Control Using Sliding Mode Control with Adaptation Laws for a Satellite (적응 법칙을 적용한 슬라이딩 모드 제어를 이용한 위성의 고장 허용 제어)

  • Shin, Miri;Kang, Chul Woo;Park, Chan Gook
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.2
    • /
    • pp.98-106
    • /
    • 2013
  • This paper proposes fault tolerant control laws using sliding mode control and adaptation laws for a satellite with reaction wheel faults. Considering system parameter errors and faults uncertainties in the dynamics of satellite, the control laws were designed. It was assumed that only reaction wheel failures occurred as faults. The reaction wheel faults were reflected in the multiply form. Because the proposed control laws satisfy the Lyapunov stability theorem, the stability is guaranteed. Through computer simulation, it was assured that the proposed adaptive sliding mode controller has a better performance than the existing sliding mode controller under unstable angular rates.