• Title/Summary/Keyword: the relative factor of land

Search Result 49, Processing Time 0.034 seconds

Analysis of Watershed Hydrologic Responses using Hydrologic Index (수문지수를 이용한 유역의 수문반응 분석)

  • Park, Yoonkyung;Kim, Sangdan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.3
    • /
    • pp.785-794
    • /
    • 2014
  • Hydrologic responses in watershed are determined by complex interactions among climate, land use, soil and vegetation. In order to effectively investigate hydrologic response in watershed, one needs to analyze the characteristics of climate as well as other factors. In this study, the relative contribution of climate factors and watershed characteristics on hydrologic response is investigated by using hydrologic indexes such as the aridity index and the Horton index. From preliminary analysis, it is shown that the Horton index is proper in terms of classifying hydrologic responses in main natural watersheds of south Korea. While climate and watershed characteristics both contributes to hydrologic responses, the degree contributed from each factor is changed depending on annual climatic humid conditions. In dry conditions, the climate factor is the predominant influence on hydrologic responses. However, in wet conditions, the contribution of watershed characteristics on hydrologic responses is relatively increased.

Spatio-temporal Change Detection of Forest Landscape in the Geumho River Watershed using Landscape Metrics (경관메트릭스를 이용한 금호강 유역 산림경관의 시·공간적 변화탐지)

  • Oh, Jeong-Hak;Park, Kyung-Hun;Jung, Sung-Gwan;Lee, Jong-Won
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.8 no.2
    • /
    • pp.81-94
    • /
    • 2005
  • The purpose of this study is to test the applicability of landscape metrics for quantifying and monitoring the landscape structure in the Geumho River watershed, which has undergone heavy environmental disturbances. Landscape metrics were computed from land cover maps(1985, 1999) for the forest patches. The number of variables were reduced from 12 metrics to 3 factors through factor analysis. These factors accounted for above 91% of the variation in the original metrics. We also determined the relative effects of land development on the changes of forest landscape structure using multiple linear regression analysis. At the forest patches, the conversion of forest to urban areas and agriculture resulted in increased fragmentation. Patch area and patch size decreased. and patch density increased as a result of the conversion of forest to agriculture($R^2=0.696$, p<0.01). The heterogeneity of patch size and complexity of patch shape mainly decreased as a result of the conversion of forest to urban areas($R^2=0.405$, p<0.01). The density of core area and edge showed the tendency increase, but there was no relationship with the conversion of forest to urban area and agriculture The future research will be needed to analyze correlations between landscape structures and specific environmental and socioeconomic landscape functions.

  • PDF

Analysis of Influential Factors on Nitrate Distribution in Ground Water in an Urbanizing Area using GIS (도시화 지역에서 GIS를 이용한 지하수 질산성질소 분포 영향요인 분석)

  • Won J.S.;Woo N.C.;Kim Y.J.
    • Economic and Environmental Geology
    • /
    • v.37 no.6 s.169
    • /
    • pp.647-655
    • /
    • 2004
  • To identify the influential factors and their relative significance on spatial distribution of $NO_3-N$ in urban ground water, spatial analysis was conducted using GIS and statistical approaches in the Seongnae-Koduk watersheds, where rapid urbanization has been proceeded. Several factors were considered including land-use type, distance to sewage lines, the ratio of impervious surface, and the ratio of green area. The spatial distribution of $NO_3-N$ in the land-use types shows differences between urban and crop field possibly due to the sewage networks in urban areas and the agrochemical uses in crop field. Nitrate concentrations in ground water were decreased with the distance to sewage lines to approximately 60-75 m. Concentrations of nitrate and distances to sewage lines showed negative correlation, indicating that the nitrate contamination was induced from the sewage system and specially significant in urban areas. The negative correlation of the ratio of impervious surface to the nitrate concentration in urban areas also suggested that the source materials of nitrate are introduced from the surface. Consequently, in areas of urbanization processes, systematic management of past-and-present land-use types and sewage systems are the most significant factors in preventing ground water from nitrate contamination.

Analysis on the Characteristics of Ventilation and Cooling for Greenhouses Constructed in Reclaimed Lands (간척지 온실의 환기 및 냉방 특성 분석)

  • Nam, Sang-Woon;Shin, Hyun-Ho
    • Journal of Bio-Environment Control
    • /
    • v.26 no.3
    • /
    • pp.181-187
    • /
    • 2017
  • The purpose of this study was to provide basic data for development of environmental design technology for greenhouses constructed in reclaimed lands. The climatic conditions around seven major reclaimed land areas with a plan to install advanced horticultural complexes in Korea were analyzed. The characteristics of natural ventilation and temperature rise through the thermal environment measurement of the greenhouse in Saemangeum were analyzed. The part to be applied to the environmental design of the greenhouses in reclaimed lands were reviewed. Results of comparing the ventilation rate of the greenhouse according to the presence or absence of plants showed the greenhouse with plants had the lower ventilation rate, but the smaller rise of indoor temperature due to the evapotranspiration of plants. In the greenhouse with plants, the number of air changes was in the range of 0.3 to 0.9 volumes/min and the average was 0.7 volumes/min. The rise of indoor temperature relative to outdoor temperature was in the range of 1 to $5^{\circ}C$ and the average $2.5^{\circ}C$. The natural ventilation performance of the experimental greenhouse constructed in the reclaimed land almost satisfied the recommended ventilation rate in summer and the rise of indoor temperature relative to outdoor temperature did not deviate considerably from the cultivation environment of plants. Therefore, it was determined that the greenhouse cultivation in Saemangeum reclaimed land is possible with only natural ventilation systems without cooling facilities. As the reclaimed land is located in the seaside, the wind is stronger than the inland area, and the fog is frequent. This strong wind speed increases the ventilation rate of greenhouses, which is considered to be a factor for reducing the cooling load. In addition, since the fog duration is remarkably longer than that of inland area, the seasonal cooling load is expected to decrease, which is considered to be advantageous in terms of the operation cost of cooling facilities.

Effects of the applications of excessive irrigation water and acetaldehyde on Chinese yam tubers at byobusan area of Aomori prefecture in Japan

  • Kawasaki, Michio;Keimatsu, Ryo;Endo, Akira
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.247-247
    • /
    • 2017
  • Byobusan area of Aomori prefecture in Japan was a marshy sand dune and had developed for agricultural land use with a large-scale sprinkler system. Recently, it becomes an agricultural problem at this area that distinctive damage with browning maculation and fissures frequently occurs in Chinese yam tubers. Acetaldehyde is one of the factor candidates of underground part damage in plants. In this study, incidence rate of the tuber damage, and the morphological character and elemental composition of the damage parts in tubers were investigated with applications of excessive irrigation water or acetaldehyde water solution into the yam field. The incidence rate of the distinctive tuber damage increased as the input amount of irrigation water was increased. At the browning maculation parts of the tubers, many fissures and damages of cork layer were observed under scanning electron microscopy. In addition, the periderm of tubers was significantly thicker in damaged parts than in non-damaged parts. Funguses, bacterium and nematodes were not observed in the damaged part under scanning electron microscopy. The weight ratio of each constituent element in an analyzed area relative to the total weight of major essential elements was measured with energy dispersive X-ray spectrometry. The results showed that the weight ratios of boron, carbon, phosphorus, sulfur and calcium were higher in damaged parts than in non-damaged parts whereas the weight ratios of oxygen and chlorine were lower in damaged parts than in non-damaged parts. It was also shown by this spectrometry that iron, cadmium, lead and zinc were not directly involved in occurrence of the tuber damage. In this study, there was no remarkable difference of tuber appearance between non-acetaldehyde and acetaldehyde application treatments. From the above results, it is shown that the damage would be a physiological disorder induced by the input of a large quantity of water in the sandy field.

  • PDF

Spatial variability of heavy metal contamination of urban roadside sediments collected from gully pots in Seoul City (서울시 우수관에서 채취한 도로변 퇴적물의 중금속오염의 공간적 변화)

  • 이평구;유연희;윤성택;신성천
    • Journal of Soil and Groundwater Environment
    • /
    • v.8 no.2
    • /
    • pp.19-35
    • /
    • 2003
  • In order 새 investigate the spatial and seasonal variations of heavy metal pollution in heavily industrialized urban area, urban roadside sediments were collected for five years from gully pots in Seoul City. A series of studies have been carried out concerning the physicochemical characteristics of the sediments in order to evaluate the contamination of heavy metals such as Cd, Co, Cr, Cu, Ni, Pb and Zn. Roadside sediments and uncontaminated stream sediments were analyzed for total metal concentrations using acid extraction. The roadside sediments are characterized by very high concentrations of Zn (2,665.0$\pm$1,815.0 $\mu\textrm{g}$/g), Cu (445.6$\pm$708.0 $\mu\textrm{g}$/g), Pb (214.3$\pm$147.9 $\mu\textrm{g}$/g) and Cr (182.1$\pm$268.8 $\mu\textrm{g}$/g), indicating an artificial accumulation of these metals to the sediment chemistry. Comparing with average contents of uncontaminated stream sediments, roadside sediments were shown zinc 14 times (up to 64.4), copper 9 times (up to 181.7), lead 6 times (up to 63.7), cobalt 6 times (up to 168.7), nickel 4 times (up to 98.4), cadmium 2 times (up to 12.8) and chrome 2 times (up to 40.2) high content. The relative degree of heavy metal pollution for roadside sediments collected from each district in Seoul City is evaluated using the “geoaccumulation index”. As a result, heavy-metal contamination is highest centering the oldest residential district and industry area, and contamination level decreases as go to outer block of the city. The factor analysis results indicate that the levels of Cu, Ni, Fe and Cr are strongly related to numbers of factories, whereas the concentrations of Cr, Zn and Cd dependant on pollution index, indicating artificial contamination due to site-specific traffic density.

Characteristics of Wave Attenuation with Coastal Wetland Vegetation (연안 습지식생에 의한 파랑감쇠 특성)

  • Lee, Seong-Dae
    • Journal of Wetlands Research
    • /
    • v.18 no.1
    • /
    • pp.84-93
    • /
    • 2016
  • As a transition region between ocean and land, coastal wetlands are significant ecosystems that maintain water quality, provide natural habitat for a variety of species, and slow down erosion. The energy of coastal waves and storm surges are reduced by vegetation cover, which also helps to maintain wetlands through increased sediment deposition. Wave attenuation by vegetation is a highly dynamic process and its quantification is important for understanding shore protection and modeling coastal hydrodynamics. In this study, laboratory experiments were used to quantify wave attenuation as a function of vegetation type as well as wave conditions. Wave attenuation characteristics were investigated under regular waves for rigid model vegetation. Laboratory hydraulic test and numerical analysis were conducted to investigate regular wave attenuation through emergent vegetation with wave steepness ak and relative water depth kh. The normalized wave attenuation was analyzed to the decay equation of Dalrymple et al.(1984) to determine the vegetation transmission coefficients, damping factor and drag coefficients. It was found that drag coefficient was better correlated to Keulegan-Carpenter number than Reynolds number and that the damping increased as wave steepness increased.

Frequent Forest Fire in Kosong-Gun, Kangwon Province (고성지방의 산불발생)

  • 이장렬
    • The Korean Journal of Quaternary Research
    • /
    • v.16 no.2
    • /
    • pp.1-8
    • /
    • 2002
  • In this paper, the writer attempts to clarify causes by general man and weather factor on forest fire occurrence in Kosong-Area, 1995-2001. The major results are summarized as follows: The forest fire at Kojin-ri, Sonyusil-ri and Majwa-ri occurred at the same area over 3 times and that Hakya-ri, Songdae-ri and Inhung-ri, at the adjoining land over 3times. In the total 46 times of forest fire, fire frequence was greatest in March(11 time) and April(11 time) followed by November(7 time), January(6 time), February(6 time). December(3 time), October(2 time). Hours on frequent forest fire are from 11:00 till 18:00. Number for forest fire occurrence by causes was greatest in military training followed by burning paddy fields, debris burning, burning agricultural debris, visiting a grave, cigarette and arson. Frequent forest fire in Kosong-Area coincide not only with above normal temperatures, but also with below normal relative humidity. When the strong winds appear at Kosong-Area, the properties of daily surface chart re the south high and north low pressure pattern in the Far East Asia.

  • PDF

Development of Trip Generation Type Models toward Traffic Zone Characteristics (Zone특성 분할을 통한 유형별 통행발생 모형개발)

  • Kim, Tae-Ho;Rho, Jeong-Hyun;Kim, Young-Il;Oh, Young-Taek
    • International Journal of Highway Engineering
    • /
    • v.12 no.4
    • /
    • pp.93-100
    • /
    • 2010
  • Trip generation is the first step in the conventional four-step model and has great effects on overall demand forecasting, so accuracy really matters at this stage. A linear regression model is widely used as a current trip generation model for such plans as urban transportation and SOC facilities, assuming that the relationship between each socio-economic index and trip generation stays linear. But when rapid urban development or an urban planning structure has changed, socio-economic index data for trip estimation may be lacking to bring many errors in estimated trip. Hence, instead of assuming that a socio-economic index widely used for a general purpose, this study aims to develop a new trip generation model by type based on the market separation for the variables to reflect the characteristics of various zones. The study considered the various characteristics (land use, socio-economic) of zones to enhance the forecasting accuracy of a trip generation model, the first-step in forecasting transportation demands. For a market separation methodology to improve forecasting accuracy, data mining (CART) on the basis of trip generation was used along with a regression analysis. Findings of the study indicated as follows : First, the analysis of zone characteristics using the CART analysis showed that trip production was under the influence of socio-economic factors (men-women relative proportion, age group (22 to 29)), while trip attraction was affected by land use factors (the relative proportion of business facilities) and the socio-economic factor (the relative proportion of third industry workers). Second, model development by type showed as a result that trip generation coefficients revealed 0.977 to 0.987 (trip/person) for "production" 0.692 to 3.256 (trip/person) for "attraction", which brought the necessity for type classifications. Third, a measured verification was conducted, where "production" and "attraction" showed a higher suitability than the existing model. The trip generation model by type developed in this study, therefore, turned out to be superior to the existing one.

Developing Fire-Danger Rating Model (산림화재예측(山林火災豫測) Model의 개발(開發)을 위(爲)한 연구(硏究))

  • Han, Sang Yeol;Choi, Kwan
    • Journal of Korean Society of Forest Science
    • /
    • v.80 no.3
    • /
    • pp.257-264
    • /
    • 1991
  • Korea has accomplished the afforestation of its forest land in the early 1980's. To meet the increasing demand for forest products and forest recreation, a development of scientific forest management system is needed as a whole. For this purpose the development of efficient forestfire management system is essential. In this context, the purpose of this study is to develop a theoretical foundation of forestfire danger rating system. In this study, it is hypothesized that the degree of forestfire risk is affected by Weather Factor and Man-Caused Risk Factor. (1) To accommodate the Weather Factor, a statistical model was estimated in which weather variables such as humidity, temperature, precipitation, wind velocity, duration of sunshine were included as independent variables and the probability of forestfire occurrence as dependent variable. (2) To account man-caused risk, historical data of forestfire occurrence was investigated. The contribution of man's activities make to risk was evaluated from three inputs. The first, potential risk class is a semipermanent number which ranks the man-caused fire potential of the individual protection unit relative to that of the other protection units. The second, the risk sources ratio, is that portion of the potential man-caused fire problem which can be charged to a specific cause. The third, daily activity level is that the fire control officer's estimate of how active each of these sources is, For each risk sources, evaluate its daily activity level ; the resulting number is the partial risk factor. Sum up the partial risk factors, one for each source, to get the unnormalized Man-Caused Risk. To make up the Man-Caused Risk, the partial risk factor and the unit's potential risk class were considered together. (3) At last, Fire occurrence index was formed fire danger rating estimation by the Weather Factors and the Man-Caused Risk Index were integrated to form the final Fire Occurrence Index.

  • PDF