DOI QR코드

DOI QR Code

Analysis of Watershed Hydrologic Responses using Hydrologic Index

수문지수를 이용한 유역의 수문반응 분석

  • Received : 2013.11.12
  • Accepted : 2014.02.18
  • Published : 2014.06.01

Abstract

Hydrologic responses in watershed are determined by complex interactions among climate, land use, soil and vegetation. In order to effectively investigate hydrologic response in watershed, one needs to analyze the characteristics of climate as well as other factors. In this study, the relative contribution of climate factors and watershed characteristics on hydrologic response is investigated by using hydrologic indexes such as the aridity index and the Horton index. From preliminary analysis, it is shown that the Horton index is proper in terms of classifying hydrologic responses in main natural watersheds of south Korea. While climate and watershed characteristics both contributes to hydrologic responses, the degree contributed from each factor is changed depending on annual climatic humid conditions. In dry conditions, the climate factor is the predominant influence on hydrologic responses. However, in wet conditions, the contribution of watershed characteristics on hydrologic responses is relatively increased.

유역에서의 수문반응은 기후요소뿐만 아니라 토지이용, 토양, 식생 등의 여러 가지 요소에 의한 복합적 상호작용에 의해 결정된다. 따라서 유역의 수문반응을 효과적으로 파악하기 위해서는 기후요소와 다른 외부요소에 대한 특성이해가 필요하다. 본 연구에서는 수문지수(건조지수, Horton 지수)를 적용하여 유역 수문반응에 영향을 미치는 기후 및 유역 특성의 상대적 영향력을 확인하고자 하였다. 우리나라 자연 유역에서는 건조지수보다는 Horton 지수를 이용하여 유역의 수문반응을 평가하는 것이 효과적이었다. 또한 기후상태에 따라 기후요소와 유역특성이 미치는 상대적인 영향력이 달라지는데, 건조한 기후상태에서는 기후요소가 지배적으로 수문반응에 영향을 미쳤으나 기후가 습윤한 상태로 갈수록 유역특성의 역할이 상대적으로 증가하고 있음을 확인하였다.

Keywords

References

  1. Budyko, M. I. (1974). "Climate and life." Academic. San Diego. Calif, p. 508.
  2. Choi, D. and Kim, S. (2010). "Revisiting horton index using a conceptual soil water balance model." Journal of the Korean Society of Civil Engineering, Korean Society of Civil Engineering, Vol. 30, No. 5B, pp. 471-477 (in Korean).
  3. Choi, D., Choi, M., Ahn, J., Park, M. J. and Kim, S. (2011). "Variability of hydrologic partitioning revisiting horton index." Journal of Korean Wetlands Society, Korean Wetlands Society, Vol. 13, No. 1, pp. 35-44 (in Korean).
  4. Chow, W. T., Maidment, D. R. and Mays, L. W. (1988). Applied hydrology, McGraw-Hill, Book Company, New York, USA.
  5. Farmer, D., Sivapalan, M. and Jothityangkoon, C. (2003). "Climate, soil and vegetation controls upon the variability of water balance in temperate and semi-arid landscapes: Downward Approach to Hydrological Prediction." Water Resource Research, Vol. 39, No. 1035, DOI:10.1029/2001WR000328.
  6. Horton, R. E. (1933). "The role of infiltration in the hydrologic cycle." American Geophysical Union, Vol. 14, pp. 446-460. https://doi.org/10.1029/TR014i001p00446
  7. Knapp, A. K. and Smith, M. D. (2001). "Variation among biomass in temporal dynamics of aboveground net primary production." Science, Vol. 291, pp. 481-484. https://doi.org/10.1126/science.291.5503.481
  8. Kim, S. D., Lee, A. Y., Lee, J. W. and Kim, T. W. (2011). "Spatiotemporal analysis of future extreme drought events using a conceptual soil water model." Journal of Korean Society of Hazard Mitigation, Korean Society of Hazard Mitigation, Vol. 11, No. 6, pp. 349-356 (in Korean). https://doi.org/10.9798/KOSHAM.2011.11.6.349
  9. Lee, J. S. (2006). Hydrology, Goomibook (in Korean).
  10. Lyne, V. and Hollick, M. (1979). "Stochastic time-variable rainfallrunoff modelling." Paper presented at Hydrology and Water Resources Symposium, Institution of Engineers Australia, Perth.
  11. Milly, P. C. (1994). "Climate, soil water storage, and the average annual water balance." Water Resource Research, Vol. 30, No. 7, pp. 2143-2156. https://doi.org/10.1029/94WR00586
  12. Milly, P. C. D., Wetherald, R. T., Dunne, K. A. and Delworth, T. L. (2008). "Climate change-Stationarity is dead: Whither Water Management?" Science, Vol. 319, No. 5863, pp. 573-574. https://doi.org/10.1126/science.1151915
  13. Penman, H. L. (1948). "Natural evaporation from open water, bare soil and grass." Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, Vol. 193, No. 1032, pp. 120-146. https://doi.org/10.1098/rspa.1948.0037
  14. Rodriguez-Iturbe, I. and A. Porporato (2004). "Ecohydrology of water controlled ecosystems: Soil Moisture and Plant Dynamics." Cambridge Univ. Press, New York.
  15. Sivapalan, M., Yaeger, M. A., Harman, C. J., Xu, X. and Troch, P. A. (2011). "Functional model of water balance variability at the catchment scale. 1: Evidence of Hydrologic Similarity and Space-Time Symmetry." Water Resources Research, Vol. 47, W02522, DOI:10.1029/2010WR009568.
  16. Troch, P. A., Martinez1, G. F., Pauwels, V. R. N., Durcik, M., Sivapalan, M., Harman, C., Brooks, P. D., Gupta, H. and Huxman, T. (2009). "Climate and vegetation water use efficiency at catchment scales." Hydrological Process, Vol. 23, pp. 2409-2414. https://doi.org/10.1002/hyp.7358
  17. Wagener, T., Sivapalan, M., Troch, P. A. and Woods, R. A. (2007). "Catchment classification and hydrologic similarity." Geography Compass, Vol. 1, No. 4, pp. 901-931, DOI:10.1111/j.1749-8198.2007.00039.x.
  18. Zhang, L., Hickel, K. Dawes, W. R., Chiew, F. H. S., Western, A. W. and Briggs, P. R. (2004). "A rational function approach for estimating mean annual evapotranspiration." Water Resources Researches, Vol. 40, W02502, DOI:10.1029/2003WR002710.