• 제목/요약/키워드: the refined theory

검색결과 283건 처리시간 0.026초

Effect of porosity on the bending and free vibration response of functionally graded plates resting on Winkler-Pasternak foundations

  • Benferhat, Rabia;Daouadji, Tahar Hassaine;Mansour, Mohamed Said;Hadji, Lazreg
    • Earthquakes and Structures
    • /
    • 제10권6호
    • /
    • pp.1429-1449
    • /
    • 2016
  • The effect of porosity on bending and free vibration behavior of simply supported functionally graded plate reposed on the Winkler-Pasternak foundation is investigated analytically in the present paper. The modified rule of mixture covering porosity phases is used to describe and approximate material properties of the FGM plates with porosity phases. The effect due to transverse shear is included by using a new refined shear deformation theory. The number of unknown functions involved in the present theory is only four as against five or more in case of other shear deformation theories. The Poisson ratio is held constant. Based on the sinusoidal shear deformation theory, the position of neutral surface is determined and the equation of motion for FG rectangular plates resting on elastic foundation based on neutral surface is obtained through the minimum total potential energy and Hamilton's principle. The convergence of the method is demonstrated and to validate the results, comparisons are made with the available solutions for both isotropic and functionally graded material (FGM). The effect of porosity volume fraction on Al/Al2O3 and Ti-6Al-4V/Aluminum oxide plates are presented in graphical forms. The roles played by the constituent volume fraction index, the foundation stiffness parameters and the geometry of the plate is also studied.

Free vibration analysis of FG plates resting on the elastic foundation and based on the neutral surface concept using higher order shear deformation theory

  • Benferhat, Rabia;Daouadji, Tahar Hassaine;Mansour, Mohamed Said;Hadji, Lazreg
    • Earthquakes and Structures
    • /
    • 제10권5호
    • /
    • pp.1033-1048
    • /
    • 2016
  • An analytical solution based on the neutral surface concept is developed to study the free vibration behavior of simply supported functionally graded plate reposed on the elastic foundation by taking into account the effect of transverse shear deformations. No transversal shear correction factors are needed because a correct representation of the transversal shearing strain obtained by using a new refined shear deformation theory. The foundation is described by the Winkler-Pasternak model. The Young's modulus of the plate is assumed to vary continuously through the thickness according to a power law formulation, and the Poisson ratio is held constant. The equation of motion for FG rectangular plates resting on elastic foundation is obtained through Hamilton's principle. Numerical examples are provided to show the effect of foundation stiffness parameters presented for thick to thin plates and for various values of the gradient index, aspect and side to thickness ratio. It was found that the proposed theory predicts the fundamental frequencies very well with the ones available in literature.

Collaboration Scripts for Argumentation Based on Activity Theory

  • KIM, Hyosook;KWON, Sungho;KIM, Dongsik
    • Educational Technology International
    • /
    • 제13권1호
    • /
    • pp.145-173
    • /
    • 2012
  • The purpose of this study is to develop collaboration scripts as an instructional means to facilitate argumentation in computer-supported collaborative learning, and to analyze their effects. To develop collaboration scripts for argumentation, researchers used activity theory as a conceptual framework and refined the design principles by design-based research. Using LAMS, collaboration scripts for argumentation were developed based on the ArgueGraph. To examine their effects, 72 participants were divided into two groups by internal scripts and randomly allocated to one of three external scripts. Applying mixed methods, researchers analyzed argumentation competence related to the cognitive aspect, examined self-efficacy related to the motivational aspect, and identified the factors influencing collaborative learning processes and outcomes. Researchers found that the internal script is a critical factor to determine the dimensions, degrees, and duration of improvement in argumentation competence. That is, learners with higher internal scripts improved highly in the quality of single arguments, while learners with lower internal scripts improved continuously in the quality of argumentation sequences. The effects of the external scripts varied with the internal script levels and supporting periods. Besides, collaboration scripts for argumentation had positive effects on learners' self-efficacy, and learners with higher internal scripts had better self-efficacy. The factors influencing collaborative learning processes and outcomes showed different results depending on the learning context. Therefore, when scripting learner's interaction in CSCL, researchers should design the scripts adaptable to a natural context of activities.

I-131 표지 Curcumin의 약동력학적 분석을 통한 귀경(歸經)연구 (Study on the Attributive Channel Theory by the Pharmacodynamic Research of I-131 labelled Curcumin)

  • 윤홍일;함인혜;조정혁;유국현;박정훈;최호영
    • 대한본초학회지
    • /
    • 제22권2호
    • /
    • pp.181-188
    • /
    • 2007
  • Objectives : This study was to verify the Attributive Channel theory of herbal medicine. Methods : [13lI]iodocurcumin was synthesized, separated, and refined from curcumin, the major component of Curcuma species, followed by observing the biodistribution in an organism. Especially, from the fact that curcumin has shown to possess potent anti-carcinogenic properties, the biodistribution in the carcinogenesis organism was analyzed. Result : Iodocurcumin 23mg was obtained through column chromatography after a reaction with 50mg of Curcumin and ICl. The nominal yield of [13lI]iodocurcumin synthesis was 35% when checked with radioactive layer of chromatography. [13lI]iodocurcumin was most largely distributed in the stomach of a BALB/c mouse and a C57BL/6 mouse transplanted with Lewis lung carcinoma cell. Conclusion : The fact that [13lI]iodocurcumin was most largely distributed in the stomach was related with the Attributive Channel theory. And there was no significant finding related to tumor cells.

  • PDF

Free vibration analysis of power-law and sigmoidal sandwich FG plates using refined zigzag theory

  • Aman Garg;Simmi Gupta;Hanuman D. Chalak;Mohamed-Ouejdi Belarbi;Abdelouahed Tounsi;Li Li;A.M. Zenkour
    • Advances in materials Research
    • /
    • 제12권1호
    • /
    • pp.43-65
    • /
    • 2023
  • Free vibration analysis of power law and sigmoidal sandwich plates made up of functionally graded materials (FGMs) has been carried out using finite element based higher-order zigzag theory. The present model satisfies all-important conditions such as transverse shear stress-free conditions at the plate's top and bottom surface along with continuity condition for transverse stresses at the interface. A Nine-noded C0 finite element having eleven degrees of freedom per node is used during the study. The present model is free from the requirement of any penalty function or post-processing technique and hence is computationally efficient. The present model's effectiveness is demonstrated by comparing the present results with available results in the literature. Several new results have been proposed in the present work, which will serve as a benchmark for future works. It has been observed that the material variation law, power-law exponent, skew angle, and boundary condition of the plate widely determines the free vibration behavior of sandwich functionally graded (FG) plate.

Nonlocal dynamic modeling of mass sensors consisting of graphene sheets based on strain gradient theory

  • Mehrez, Sadok;Karati, Saeed Ali;DolatAbadi, Parnia Taheri;Shah, S.N.R.;Azam, Sikander;Khorami, Majid;Assilzadeh, Hamid
    • Advances in nano research
    • /
    • 제9권4호
    • /
    • pp.221-235
    • /
    • 2020
  • The following composition establishes a nonlocal strain gradient plate model that is essentially related to mass sensors laying on Winkler-Pasternak medium for the vibrational analysis from graphene sheets. To achieve a seemingly accurate study of graphene sheets, the posited theorem actually accommodates two parameters of scale in relation to the gradient of the strain as well as non-local results. Model graphene sheets are known to have double variant shear deformation plate theory without factors from shear correction. By using the principle of Hamilton, to acquire the governing equations of a non-local strain gradient graphene layer on an elastic substrate, Galerkin's method is therefore used to explicate the equations that govern various partition conditions. The influence of diverse factors like the magnetic field as well as the elastic foundation on graphene sheet's vibration characteristics, the number of nanoparticles, nonlocal parameter, nanoparticle mass as well as the length scale parameter had been evaluated.

In-plane varying bending force effects on wave dispersion characteristics of single-layered graphene sheets

  • Cao, Yan;Selmi, Abdellatif;Tohfenamarvar, Rasoul;Zandi, Yousef;Kasehchi, Ehsan;Assilzahed, Hamid
    • Advances in nano research
    • /
    • 제10권2호
    • /
    • pp.101-114
    • /
    • 2021
  • An analytical investigation has been performed on the mechanical performance of waves propagated in a Single-Layered Graphene Sheet (SLGS) when an In-plane Varying Bending (IVB) load is interacted. It has been supposed that the Graphene Sheet (GS) is located on an elastic medium. Employing a two-parameter elastic foundation, the effects of elastic substrate on the GS behavior are modeled. Besides, the kinematic equations are derived by the means of a trigonometric two-variable refined plate theory. Moreover, in order to indicate the size-dependency of the SLGS, a Nonlocal Strain Gradient Theory (NSGT) was considered. The nonlocal governing differential equations are achieved in the framework of Hamilton's Principle (HP). Also, an analytical approach was used to detect the unknowns of the final eigenvalue equation. Finally, the effects of each parameters using some dispersion charts were determined.

Bending analysis of functionally graded porous plates via a refined shear deformation theory

  • Zine, Abdallah;Bousahla, Abdelmoumen Anis;Bourada, Fouad;Benrahou, Kouider Halim;Tounsi, Abdeldjebbar;Adda Bedia, E.A.;Mahmoud, S.R.;Tounsi, Abdelouahed
    • Computers and Concrete
    • /
    • 제26권1호
    • /
    • pp.63-74
    • /
    • 2020
  • In this investigation, study of the bending response of functionally graded (FG) porous plates is presented using a cubic shear deformation theory. The properties of the FG-plate vary according to a power-law distribution which is modified to approximate material characteristics for considering the effect of porosities. The equilibrium equations are derived by using the principle of virtual work and solved by using Navier's procedure. Various numerical results are discussed to demonstrate the influence of the variation of the power index, the porosity parameter and the geometric ratios on the bending response of FG porous plates.

다중세포로 구성된 박벽 타원형 단면 복합재료 블레이드의 구조해석 (Structural Analysis of Thin-Walled, Multi-Celled Composite Blades with Elliptic Cross-Sections)

  • 박일주;정성남
    • Composites Research
    • /
    • 제17권4호
    • /
    • pp.25-31
    • /
    • 2004
  • 본 연구에서는 다중세포로 구성된 타원형 단면 복합재료 블레이드의 정밀 1차원 보 해석모델을 개발하였다. 보의 정식화를 위하여 Reissner의 반보족에너지 함수를 이용하였으며, 고전적인 강성도 및 유연도법을 결합한 혼합보 이론 체계를 구축하였다. 타원단면의 특성계수들을 구하기 위해 단면의 외곽선을 유한개의 선분으로 분할하고 여기에 Gauss 적분을 수행하였다. 또한, 단면을 구성하는 각 세포에 대해 4개의 연속방정식이 충족되도록 구성하였다. 개발된 보 이론을 단일 및 이중세포로 구성된 타원형 복합재료 블레이드에 적용하였으며, 다차원 정밀 유한요소 해석 결과와 비교하여 그 타당성을 확보하였다.

CCl4 Activation Mechanisms by Gas-Phase CHBr and CBr2: A Comparative Study

  • Liang, Junxi;Wang, Yanbin;Hasi, Qimeige;Geng, Zhiyuan
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권2호
    • /
    • pp.426-432
    • /
    • 2013
  • The mechanisms concerning C-Cl activation of $CCl_4$ by $CHBr^{{\cdot}-}$ and $CBr{_2}^{{\cdot}-}$ have been comparatively investigated in theory. Optimized geometries and frequencies of all stationary points on PES are obtained at the BhandHLYP/aug-cc-pVTZ level of theory, and then the energy profiles are refined at the QCISD(T) method with the aug-cc-pVTZ basis by using the BhandHLYP/aug-cc-pVTZ optimized geometries. Our calculated findings suggest that in the title reactions the major mechanisms consist of both Cl-abstraction and $S_N2$ substitution reactions. Also, a succeeding pathway described by electron transfer was revealed before the initial Cl-abstraction products separate. Those are consistent with relevant experimental results.