• 제목/요약/키워드: the ratio of runoff

검색결과 319건 처리시간 0.031초

산지사면의 유출 및 토양침식에 대한 에너지 보존 (Energy Conservation for Runoff and Soil Erosion on the Hillslope)

  • 신승숙;박상덕;조재웅;홍종선
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2008년도 학술발표회 논문집
    • /
    • pp.234-238
    • /
    • 2008
  • The energy conservation theory is introduced for investigating processes of runoff and soil erosion on the hillslope system changed vegetation condition by wildfire The rainfall energy, input energy consisted of kinetic and potential energy, is influenced by vegetation coverage and height. Output energy at the outlet of hillslope is decided as the kinetic energy of runoff and erosion soil, and mechanical work according to moving water and soil is influenced dominantly by the work rather than the kinetic energy. Relationship between output and input energy is possible to calculate the energy loss in the runoff and erosion process. The absolute value of the energy loss is controlled by the input energy size of rainfall because energy losses of runoff increase as many rainfall pass through the hillslope system. The energy coefficient which is dimensionless is defined as the ratio of input energy of rainfall to output energy of runoff water and erosion soil such as runoff coefficient. The energy coefficient and runoff coefficient showed the highest correlation coefficient with the vegetation coverage. Maximum energy coefficient is about 0.5 in the hillslope system. The energy theory for output energy of runoff and soil erosion is presented by the energy coefficient theory associated with vegetation factor. Also runoff and erosion soil resulting output energy have the relation of power function and the rates of these increase with rainfall.

  • PDF

RCP 기후변화 시나리오에 따른 우수 유출량 저감을 위한 저영향개발 시설의 적용 방안 (Application of LID to Reduce Storm Runoff according to the RCP Climate Change Scenarios)

  • 김민지;김지은;박경운;김태웅
    • 대한토목학회논문집
    • /
    • 제42권3호
    • /
    • pp.333-342
    • /
    • 2022
  • 기후변화의 영향으로 집중호우가 증가하고 있으며, 이로 인한 침수피해가 매년 발생하고 있다. 본 연구는 저영향개발(LID) 시설의 우수 유출저감 효과를 분석하기 위하여, 용두빗물펌프장 유역을 대상으로, 미국 환경보호청(EPA)의 우수유출관리모형(SWMM)을 이용하여, 과거와 미래의 대표 강우사상에 대한 유출분석을 수행하였다. 그 결과 과거 강우사상과 비교하여 미래 대표 강우사상에 대한 침투량은 3.17 % 증가하였지만, 지표면 유출량 및 첨두유량은 각각 32.50 % 및 128.77 % 증가하였다. 이러한 지표면 유출량과 첨두유량의 증가를 감소시키기 위하여 투수성 포장, 옥상녹화 및 빗물정원을 선정하였다. 세 가지 LID 시설의 매개변수와 설치 면적 비율을 조정하여 LID 시설의 적용성을 평가하였다. 그 결과 첨두유량과 지표 유출량을 감소시키고 침투량과 저류량를 증가시키는 투수성 포장, 옥상 정원 그리고 빗물 정원의 적정 매개변수를 찾을 수 있었다. 또한 투수성 포장, 옥상녹화, 빗물정원의 적용 비율이 2:1:3일 때, 첨두유량 26.85 %, 침투량 12.10 %, 지표면 유출량 15.11 %, 저류량 509.47 %의 저감효과가 나타났다. 재현기간별 우수 유출저감 효과를 분석한 결과, 재현기간이 증가할수록 첨두유량과 지표면 유출량의 비중은 늘어나고 침투량과 저류량의 비중은 줄어드는 것으로 나타났다.

SSP 기후변화 시나리오에 따른 간월호 유역의 미래 유출특성 변화 (Future Runoff Characteristics of Ganwol Estuary Reservoir Watershed Based on SSP Scenarios)

  • 김시내;김동희;김석현;황순호;강문성
    • 한국농공학회논문집
    • /
    • 제65권5호
    • /
    • pp.25-35
    • /
    • 2023
  • The estuary reservoir is a major source of agricultural water in Korea; for effective and sustainable water resource management of the estuary reservoir, it is crucial to comprehensively consider various water resource factors, including water supply, flood, and pollutant management, and analyze future runoff changes in consideration of environmental changes such as climate change. The objective of this study is to estimate the impact of future climate change on the runoff characteristics of an estuary reservoir watershed. Climate data on future Shared Socioeconomic Pathway (SSP) scenarios were derived from two Global Climate Models (GCMs) of the Coupled Model Intercomparison Project phase 6 (CMIP6). The Hydrological Simulation Program-Fortran (HSPF) was used to simulate past and future long-term runoff of the Ganwol estuary reservoir watershed. The findings showed that as the impact of climate change intensified, the average annual runoff in the future period was higher in the order of SSP5, SSP3, SSP1, and SSP2, and the ratio of runoff in July decreased while the ratio of runoff in October increased. Moreover, in terms of river flow regime, the SSP2 scenario was found to be the most advantageous and the SSP3 scenario was the most disadvantageous. The findings of this study can be used as basic data for developing sustainable water resource management plans and can be applied to estuary reservoir models to predict future environmental changes in estuary reservoirs.

저류형 옥상녹화의 우수유출저감에 대한 연구 (Runoff Reduction Effect of Rainwater Retentive Green roof)

  • 백소영;김현우;김미경;한무영
    • KIEAE Journal
    • /
    • 제16권1호
    • /
    • pp.67-71
    • /
    • 2016
  • Purpose: There is a growing interest in rainwater runoff reduction effect of green roof, as flooding caused by increasing impervious surface is becoming more and more frequent in urban areas. This study was conducted to prove runoff reduction and runoff delay effect of the retentive green roof and to investigate its influencing factors to the rainfall events that occurred in the summer of 2013. Method: The experiment intended to monitor the runoff quantity of the retentive green roof($140m^2$) and normal roof($100m^2$) in #35 building in Seoul National University, Seoul, Korea for 75 days in 2013. Result: On analysis of 9 rainfall events, it showed that the retentive green roof has 24.8~100% of runoff reduction ratio, 21.2~100% of peak flow reduction ratio, 0.5~3.75 hours of peak delay, and $1.8{\sim}7.2m^3$ of retaining capacity in an area of $140m^2$. It shows different results depending on rainfall and antecedent dry days. The results show that runoff reduction effect is effective when the rainfall is less than 50 mm and antecedent dry day is longer than five days on average. By installing retentive green roofs on buildings, it can help mitigate urban floods and rehabilitate urban water cycle.

하천의 유황에 관한 수문학적 연구 (A Hydrological Study on the Flow Characteristic of the Keum River)

  • 박성우
    • 한국농공학회지
    • /
    • 제16권2호
    • /
    • pp.3438-3453
    • /
    • 1974
  • Unmeasured value of water for human lives is widely approved, but the water as one of natural resources cannot be evaluated with ease since it changes itself ceaselessly by flowing-out or transforming the phase. Major objectives of the study concerned consequently with investigating its potentiality and evaluating its time seriesly availabity in a volumatic unit. And the study was performed to give the accurate original data to the planners concerned. Some developed rational methods of predicting runoff related to hydrological factors as precipitation, were to be discusseed for their theorical background and to be introduced whether they needed some corrections or not, comparing their estimation with actual runoff from synthetic unit-hydrograph methods. To do so, the study was performed to select Kongju Station, located at the watershed of the Keum River, and to collect such hydrological data from 1962 to 1972 as runoff, water level, precipitation, and so on. On the other hand, the hydrological characteristics of runoff were concluded more reasonably in numerical values, with calculating the the ratio of daily runoff to annual discharge of the flow in percentage, as. the distribution ratio of runoff. The results of the study can be summarized as follows; (1) There needed some consideration to apply the Kajiyama's Formula for predicting monthly runoff of rivers in Korea.(2) The rational methods of predicting runoff might be recommended to become less theorical and reliable than the unique analyzation of data concerned in each given water basin. The results from the Keum River prepared above would be available to any programms concerned. (3) The most accurate estimation for runoff could be suggested to synthetic unithydrograph methods calculated from the relation between each storm and runoff. However it was not contained in the study. (4) The relations between rainfall and runoff at KongJu Station were as following table. The table showed some intersting implications about the characteristics of runoff at site, which indicated that the runoff during three months from July to September approached total of 60% of quantity while precipitation concentrated on the other three from June to August. And there were some months which had more amount of runoff than expected values calculated from the precipitation, such as Febrary, March, August, September, Octover, and December, shown in the table. Such implications should be suggested to meet any correction factors in the future formulation concerned with the subjects, if any rational methods would be required.

  • PDF

투수성 폴리머 블록 포장에 의한 우수 유출 저감 효과에 관한 실험적 연구 (Experimental Study on Rainfall Runoff Reduction Effects by Permeable Polymer Block Pavement)

  • 성찬용;김영익
    • 한국농공학회논문집
    • /
    • 제54권2호
    • /
    • pp.157-166
    • /
    • 2012
  • Most of the roads are paved with impermeable materials such as asphalt concrete and cement concrete, and in the event of heavy rainfall, rainwater directly flows into river through a drainage hole on the pavement surface. This large quantity of rainwater directly spilled into the river frequently leads to the flooding of urban streams, damaging lowlands and the lower reaches of a river. In recent years there has been a great deal of ongoing research concerning water permeability and drainage in pavements. Accordingly, in this research, a porous polymer concrete was developed for permeable pavement by using unsaturated polyester resin as a binder, recycled aggregate as coarse aggregate, fly ash and blast furnace slag as filler, and its physical and mechanical properties were investigated. Also, 3 types of permeable polymer block by optimum mix design were developed and rainfall runoff reduction effects by permeability pavement using permeable polymer block were analyzed based on hydraulic experimental model. The infiltration volume, infiltration ratio, runoff initial time and runoff volume in permeability pavement with permeable polymer block of $300{\times}300{\times}80$ mm were evaluated for 50, 100 and 200mm/hr rainfall intensity.

설계기준 변경에 따른 유출계수 추정 - 공원을 중심으로 - (Estimation of Runoff Coefficient according to Revision of Design Criteria, in case of Park)

  • 김태균;김태진;이보림
    • 한국습지학회지
    • /
    • 제18권3호
    • /
    • pp.209-217
    • /
    • 2016
  • 합리식은 유역 면적, 강우강도와 토지이용 또는 표면형태에 따라 결정되는 일정한 범위의 유출계수로 이루어져있다. 2011년에 개정된 하수도시설기준에서는 5~10년 재현기간의 설계홍수량을 증가하기 위해 재현기간을 10~30년으로 조정하였다. Ponce, ASCE 등은 재현기간(강우강도)이 클수록 큰 유출계수를 적용할 것을 제시하고 있으나, 재현기간의 상향조정에 따른 유출계수의 증가에 대하여서는 현재 조정되지 않은 상태이다. 본 연구에서는 토지이용 및 표면형태에 많은 차이를 보이는 공원을 대상으로 불투수면적비 변화와 설계확률년수 조정에 따른 유출계수를 추정하고자 한다. 첫째, 20개 도시에서 무작위로 선정된 1,004개 공원을 대상으로 표면형태별 면적비를 구하여 유출계수를 추정하였다. 둘째, 재현기간 조정에 대한 영향은 재현기간 10년에 대한 30년의 유출계수비를 69개 기상관측소 지점에 대하여 지속기간별로 구하였다. 이에 따라, 표면형태의 차이와 재현기간 조정을 고려한 재현기간 10~30년 에 대한, 공원의 유출계수는 0.43~0.54의 범위를 가지는 것으로 나타났으며, 지역적 편차와 지속기간별 편차는 크지 않는 것으로 나타났다.

도시 소유역의 유출변화 분석 (Runoff Analysis of Urban Small Watershed)

  • 이기춘;박승우;최진규
    • 한국농공학회지
    • /
    • 제31권1호
    • /
    • pp.45-57
    • /
    • 1989
  • The hydrologic model FESHM was introduced and its applicability was investigated in an attempt to analyze the rainfall-runoff relationships of urban small watersheds and to hereafter predict the envi-ronmental changes. Basic data on rainfall, water level, geomorphological characterisitics and land use were obtained from Yeonwha stream watershed located in Chonju-si Dukjin-dong. WL-5 for simulation o subshed WS# 1(136.7 ha) with urban district and WL-1 for total watershed WS#5 (278.78 ha) we'e selected as gaging points. The main results gained through applications were summarized as follows. 1. Direct runoff ratio caalculated from a simple separation method for WS#5 WS# 1 was 2O~39%, 38~62%, respectively. 2. Simulations for the runoff estimation were carried out for each watershed using 5 rainfall events, the simulation errors had the range of 2~ 30%, O~ 63% and O 120 minutes for the runoff volume, peak flow and peak time, respectively. 3. The effect of landuse change by urbanization was tested to WS# 1, runoff volume before development was estimated as from tenth to twentieth against after development.

  • PDF

Characteristics of Andong Dam Inflow during Non-rainfall Season

  • Park, Gey-Hwan;Park, Ki-Bum;Chang, In-Soo
    • 한국환경과학회지
    • /
    • 제27권10호
    • /
    • pp.845-851
    • /
    • 2018
  • In this study, the runoff characteristics of the non-rainfall period were examined using daily rainfall data from 1977 to 2017 and the data of runoff into the dam. Results showed that, the mean runoff decreases with longer non-rainfall periods in the Andong dam basin. The correlation coefficient between non-rainfall days and average runoff reaches 0.85. The results of the analysis of the runoff characteristics during the non-rainfall period, based on the preceding rainfall of Andong dam are as follows. The runoff characteristics of the entire non-rainfall period, shows that, for a rainfall of 1.0 mm or less, the runoff height was larger than the rainfall size and the base runoff larger. The correlation between the antecedent rainfall and runoff height was reached as high as 0.9864 in the 30 ~ 50 mm interval of the antecedent rainfall period, and this is the interval where the linearity of rainfall and runoff was at its maximum in the Andong dam basin. The correlation between the antecedent rainfall and the runoff height reached 0.92 for rainfalls of 100.0 mm. However, for rainfalls of 100.0 mm greater, the correlation between the antecedent rainfall and runoff height during the rainfall period was 0.64, which is relatively small. In this study, we investigated the runoff characteristics of the rainfall period in the Andong dam watershed. As a result, it was confirmed that the mean runoff decreased with rainfall duration. The linearity was found to be weak for rainfall events greater than 100.0 mm. The results of this study can be used as data for water balance analysis and for formulating a water supply plan to establish water resource management of Andong dam.

낙동강유역의 증발산량과 물수지 (Evapotranspiration and Water Balance in the Basin of Nakdong River)

  • 조희구;이태영
    • 물과 미래
    • /
    • 제8권2호
    • /
    • pp.81-92
    • /
    • 1975
  • Calculation of the monthly water balance for Nakdong River basin for the period from 1958 to 1968 is made by determining three components independently: precipitation, runoff and evapotranspiration. The areal precipitation is computed by the Thiessen method using the records of nine meteorological stations in the basin, and the runoff is the flow gauged at Jindong which is located on the most downstream. For the computation of evapotranspiration, the Morton method is adopted because this method is relatively fit best in the calculation of water balance among the Morton, Penman and Thornthwaite methods. The values of Morton evapotransp iration are corrected by the factor of 0.82 in the basin in order to bring the error to zero. The areal evapotranspiration is the arithmetic mean of the Morton estimates at the stations. Mean water balance components in the Nakdong river basin are 1117.0mm, 600.6mm and 516.4m for precipitation, runoff and evapotranspiration respectively. Accordingly, the mean runoff ratio comes out to be 0.54. The smallest values of runoff coefficient are due for Daegu area, while the largest ones are for the southwest of the basin with the higher rainfall and high elevations there. The amount of runoff obtained by both Thornthwaite and Budyko methods for water balance computations indicate 59 and 60 per cent of actual values which are lower than the expected. An attempt is made to find the best reliable rainfall-runoff relation among the four methods proposed by Schreiber, 01'dekop, Budyko and Sellers. The modified equation of Schreiber type for annual runoff coefficient could be obtained with the smallest mean error of 11 per cent.

  • PDF