• Title/Summary/Keyword: the prefrontal activation

Search Result 58, Processing Time 0.029 seconds

Understanding of Neural Mechanism of Mood Disorders : Focused on Neuroimaging Findings (기분장애 뇌신경기저에 대한 이해 : 뇌영상 연구를 중심으로)

  • Kim, Yoo-Ra;Lee, Kyoung-Uk
    • Korean Journal of Biological Psychiatry
    • /
    • v.18 no.1
    • /
    • pp.15-24
    • /
    • 2011
  • Mood disorder is unlikely to be a disease of a single brain region or a neurotransmitter system. Rather, it is now generally viewed as a multidimensional disorder that affects many neural pathways. Growing neuroimaging evidence suggests the anterior cingulate-pallidostriatal-thalamic-amygdala circuit as a putative cortico-limbic mood regulating circuit that may be dysfunctional in mood disorders. Brain-imaging techniques have shown increased activation of mood-generating limbic areas and decreased activation of cortical areas in major depressive disorder(MDD). Furthermore, the combination of functional abnormalities in limbic subcortical neural regions implicated in emotion processing together with functional abnormalities of prefrontal cortical neural regions probably result in the emotional lability and impaired ability to regulate emotion in bipolar disorder. Here we review the biological correlates of MDD and bipolar disorder as evidenced by neuroimaging paradigms, and interpret these data from the perspective of endophenotype. Despite possible limitations, we believe that the integration of neuroimaging research findings will significantly advance our understanding of affective neuroscience and provide novel insights into mood disorders.

A Study on the Attention Concentration Properties in Convergent Exploration Situations in Cafe Space - Focusing on Gaze and Brain wave Data Analysis - (카페공간에 대한 수렴적 탐색상황에서의 주의집중 특성의 분석 방법에 관한 연구 - 선택적 주시데이터에 의한 뇌파 데이터 분석을 중심으로 -)

  • Kim, Jong-Ha;Kim, Ju-Yeon;Kim, Sang-Hee
    • Korean Institute of Interior Design Journal
    • /
    • v.25 no.2
    • /
    • pp.30-40
    • /
    • 2016
  • This study analyzed the attention concentration tendencies of one(1) subject who showed convergent exploratory acts actively through the gaze-brainwave measurement experiment of cafe space images and our research findings are as follows. First, the areas of interest (AOIs) that the subject gazed visually by paying attention to it and concentrating on it at a cafe space include counter&menu area, sign area, partition area, image wall area, stairs area, and movable furniture area, and built-in furniture area: seven areas in total. Second, conscious gaze frequency appeared the highest in counter&menu area, and conscious gaze appeared more later than in initial times. Third, conscious gaze pattern was divided into the zone that explored various areas dispersely (distributed exploratory zone) and the zone that explored between particular areas concentratedly (intensive exploratory zone). Fourth, as a result of analyzing the brainwave attention concentration, it was found that the attention concentration in prefrontal lobe (Fp1, Fp2) and frontal lobe (F3, F4) rose to a higher level in the zone of 15 to 16 seconds and this time zone was considered to be a zone where gazing at counter&menu area was very active. In addition, the attention concentration appeared higher in the initial zone than in the later zone, among the entire experimental time zones. Finally, as a result of analyzing the changes in activation by brain portion of the SMR wave expressed when maintaining the arousal and attention concentration, it was found that the right prefrontal lobe and the frontal lobe became activated in the time zone when the intensive exploration of "counter&menu area" and "movable furniture${\leftrightarrow}$built-in furniture area" had occurred and the time zone when the intensive exploration of "image wall${\leftrightarrow}$partition area" and "counter&menu${\leftrightarrow}$sign area" had occurred.

Basic Neurobiological Aspect of Dream (꿈의 신경생물학적 측면의 기초)

  • Kim, Seog-Ju
    • Sleep Medicine and Psychophysiology
    • /
    • v.16 no.2
    • /
    • pp.49-55
    • /
    • 2009
  • This review aims to introduce the basic neurobiological aspects of dream. There have been long debates on whether the neurobiology of rapid eye movement (REM) sleep is identical to that of dream. However, many theories on dream are based on the findings of REM sleep. Bizarre cognition and intense emotion in dream have been suggested to derive from physiological (e.g. desynchronized gamma oscillation and postsynaptic inhibition), chemical (e.g. decreased noradrenalin and serotonin, increased acetylcholine and modulation of dopamine), anatomical (e.g. deactivation of dorsolateral prefrontal cortex and activation of limbic and paralimbic areas) change in REM sleep. In addition, dream has been suggested to play its neurobiological roles. Processing of negative emotion may be one of the functions of dream. Dream is also supposed to consolidate memory, especially semantic memory. Despite a number of hypotheses and debates, the neurobiological mechanism of dream generation has not been concluded.

  • PDF

Functional Mapping of the Neural Basis for the Encoding and Retrieval of Human Episodic Memory Using ${H_2}^{15}O$ PET ({H_2}^{15}O$ PET을 이용한 정상인의 삽화기억 부호화 및 인출 중추 뇌기능지도화)

  • Lee, Jae-Sung;Nam, Hyun-Woo;Lee, Dong-Soo;Lee, Sang-Kun;Jang, Myoung-Jin;Ahn, Ji-Young;Park, Kwang-Suk;Chung, June-Key;Lee, Myung-Chul
    • The Korean Journal of Nuclear Medicine
    • /
    • v.34 no.1
    • /
    • pp.10-21
    • /
    • 2000
  • Purpose: Episodic memory is described as an 'autobiographical' memory responsible for storing a record of the events in our lives. We performed functional brain activation study using ${H_2}^{15}O$ PET to reveal the neural basis of the encoding and the retrieval of episodic memory in human normal volunteers. Materials and Methods: Four repeated ${H_2}^{15}O$ PET scans with two reference and two activation tasks were performed on 6 normal volunteers to activate brain areas engaged in encoding and retrieval with verbal materials. Images from the same subject were spatially registered and normalized using linear and nonlinear transformation. Using the means and variances for every condition which were adjusted with analysis of covariance, t-statistic analysis were performed voxel-wise. Results: Encoding of episodic memory activated the opercular and triangular parts of left inferior frontal gyrus, right prefrontal cortex, medial frontal area, cingulate gyrus, posterior middle and inferior temporal gyri, and cerebellum, and both primary visual and visual association areas. Retrieval of episodic memory activated the triangular part of left inferior frontal gyrus and inferior temporal gyrus, right prefrontal cortex and medial temporal area, and both cerebellum and primary visual and visual association areas. The activations in the opercular part of left inferior frontal gyrus and the right prefrontal cortex meant the essential role of these areas in the encoding and retrieval of episodic memory. Conclusion: We could localize the neural basis of the encoding and retrieval of episodic memory using ${H_2}^{15}O$ PET, which was partly consistent with the hypothesis of hemispheric encoding/retrieval asymmetry.

  • PDF

The Development of the Brain-based Analysis Framework for the Evaluation of Teaching-Learning Program in Science (과학 교수-학습 프로그램의 평가를 위한 두뇌기반 분석틀의 개발)

  • Lee, Jun-Ki;Lee, Il-Sun;Kwon, Yong-Ju
    • Journal of The Korean Association For Science Education
    • /
    • v.30 no.5
    • /
    • pp.647-667
    • /
    • 2010
  • The purpose of this study was to develop a brain-based analysis framework for evaluating teachinglearning program in science. To develop the framework, this study categorized educational constructs of the teachinglearning programs into one of three teaching-learning factors: cognition, motive, and emotion, using previous studies on science program. Ninety-three articles on the brain functions associated with science program were analyzed to extract brain activation regions related to the three educational constructs. After delineating the brain activation regions, we designed the brain function map, "the CORE Brain Map." Based on this brain map, we developed a brain-based analysis framework for evaluating science teaching-learning program using R & D processes. This framework consists of the brain regions, the bilateral dorsolateral prefrontal cortex, the bilateral ventrolateral prefrontal cortex, the bilateral orbitofrontal cortex, the anterior cingulate gyrus, the bilateral parietal cortex, the bilateral temporal cortex, the bilateral occipital cortex, the bilateral hippocampus, the bilateral amygdala, the bilateral nucleus accumbens, the bilateral striatum and the midbrain regions. These brain regions are associated with the aforementioned three educational factors; cognition, motivation, and emotion. The framework could be applied to the analysis and diagnosis of various teaching and learning programs in science.

The Preliminary Study on Driver's Brain Activation during Take Over Request of Conditional Autonomous Vehicle (조건부 자율주행에서 제어권 전환 시 운전자의 뇌 활성도에 관한 예비연구)

  • Hong, Daye;Kim, Somin;Kim, Kwanguk
    • Journal of the Korea Computer Graphics Society
    • /
    • v.28 no.3
    • /
    • pp.101-111
    • /
    • 2022
  • Conditional autonomous vehicles should hand over control to the driver according on driving situations. However, if the driver is immersed in a non-driving task, the driver may not be able to make suitable decisions. Previous studies have confirmed that the cues enhance take-over performance with a directional information on driving. However, studies on the effect of take-over cues on the driver's brain activities are rigorously investigated yet. Therefore, this study we evaluates the driver's brain activity according to the take-over cue. A total of 25 participants evaluated the take-over performance using a driving simulator. Brain activity was evaluated by functional near-infrared spectroscopy, which measures brain activity through changes in oxidized hemoglobin concentration in the blood. It evaluates the activation of the prefrontal cortex (PFC) in the brain region. As a result, it was confirmed that the driver's PFC was activated in the presence of the cue so that the driver could stably control the vehicle. Since this study results confirmed that the effect of the cue on the driver's brain activity, and it is expected to contribute to the study of take-over performance on biomakers in conditional autonomous driving in future.

Working Memory Mapping Analysis using fMRI (기능적 자기공명영상을 이용한 단기기억 뇌기능 매핑연구)

  • Juh Rahyeong;Choe Boyoung;Suh Taesuk
    • Progress in Medical Physics
    • /
    • v.16 no.1
    • /
    • pp.32-38
    • /
    • 2005
  • Impaired processing of facial information is one of the broad ranges of cognitive deficits seen in patients with schizophrenia. The purpose of this study was to elucidate the differences in brain activities involved in the process of facial working memory between schizophrenic patients and healthy comparison subjects. Ten patients with schizophrenia were recruited along with matched healthy volunteers as a comparison group. Functional magnetic resonance imaging (fMRI) was used to assess cortical activities during the performance of a 1-back working memory paradigm using images of neutral faces as mnemonic content. The patient group performed the tasks with reduced accuracy. Group analysis revealed that left fusiform gyrus, right superior frontal gyrus, bilateral middle frontal gyri/insula, left middle temporal gyrus, precuneus and vermis of cerebellum and showed decreased cortical activities in the patient group. On the other hand, an increased level of activation in lateral prefrontal cortex and parietal lobule was observed from the patient group, all in the right hemisphere. A decreased level of activity in the left fusiform gyrus among the patient group implicates inefficient processing of facial information. An increased level of activation in prefrontal and parietal neural networks from the patient group confirms earlier findings on the impaired working memory of patients with schizophrenia.

  • PDF

The Evaluation of Cerebral Executive Function Using Functional MRI (기능적 자기공명영상기법을 이용한 대뇌의 집행기능 평가)

  • Eun, Sung Jong;Gook, Jin Seon;Kim, Jeong Jae
    • Journal of the Korean Society of Radiology
    • /
    • v.7 no.5
    • /
    • pp.305-311
    • /
    • 2013
  • This study involves an experiment using functional magnetic resonance imaging(fMRI) to delineate brain activation for execution functional performance. Participates to this experiment of the normal adult (man 4, woman 6) of 10 people, is not inserts the metal all closed phobia and 24.5 year-old average ages which the operating surgeon experience which are not they were. The subject for a functional MRI experiment word -color test prosecuting attorney subject rightly at magnetic pole presentation time of 30 first editions and after presenting, uses SPM 99 programs and the image realignment, after executing a standardization (nomalization), a difference which the signal burglar considers the timely order as lattice does, pixel each image will count there probably is, in order to examine rest and active crossroad dividing independence sample t-test (p<.05). Overlapped in this standard anatomic image and got a brain activation image from level of significance 95%. With functional MRI resultant execution function inside being relation, the prefrontal lobe, anterior cingulate gyrus, parietal lobe, orbitofrontal gyrus, temporal lobe, parietal lobe was activated. The execution function promotes a recovery major role from occupational therapy, understanding about the damage mechanism is important. When confirms the brain active area which accomplishes an execution function brain plasticity develops the cognitive therapeutic method which is effective increases usefully very, will be used.

Korean Red Ginseng prevents posttraumatic stress disorder-triggered depression-like behaviors in rats via activation of the serotonergic system

  • Lee, Bombi;Sur, Bongjun;Lee, Hyejung;Oh, Seikwan
    • Journal of Ginseng Research
    • /
    • v.44 no.4
    • /
    • pp.644-654
    • /
    • 2020
  • Background: Posttraumatic stress disorder (PTSD), a mental disorder induced by traumatic stress and often accompanied by depression and/or anxiety, may involve an imbalance in the neurotransmitters associated with the fear response. Korean Red Ginseng (KRG) has long been used as a traditional medicine and is known to be involved in a variety of pharmacological activities. We used the open field test and forced swimming test to examine the effects of KRG on the depression-like response of rats after exposure to single prolonged stress (SPS), leading to activation of the serotonergic system. Methods: Male rats received KRG (30, 50, and 100 mg/kg, intraperitoneal injection) once daily for 14 days after exposure to SPS. Results: Daily KRG administration significantly improved depression-like behaviors in the forced swimming test, increased the number of lines crossed and time spent in the central zone in the open field test, and decreased freezing behavior in contextual and cued fear conditioning. KRG treatment attenuated SPS-induced decreases in serotonin (5-HT) tissue concentrations in the hippocampus and medial prefrontal cortex. The increased 5-HT concentration during KRG treatment may be partially attributable to the 5-hydroxyindoleacetic acid/5-HT ratio in the hippocampus of rats with PTSD. These effects may be caused by the activation of hippocampal genes encoding tryptophan hydroxylase-1 and 2 mRNA levels. Conclusion: Our findings suggest that KRG has an antidepressant effect in rats subjected to SPS and may represent an effective use of traditional medicine for the treatment of PTSD.

The Biologists' Boon Activation Patterns during the Generation of Scientific Questions on Biological Phenomena (생명현상에 관한 과학적 의문 생성 과정에서 나타나는 생물학자의 두뇌 활성 양상)

  • Kwon, Yong-Ju;Jeong, Jin-Su;Lee, Jun-Ki;Yang, Il-Ho
    • Journal of The Korean Association For Science Education
    • /
    • v.27 no.1
    • /
    • pp.84-92
    • /
    • 2007
  • The purpose of this study was to investigate biologists' brain activation patterns during the generation of scientific questions on biological phenomena. Eight right-handed healthy biologists volunteered to be participants in the present study. The question-generation tasks were presented in a block design. The BOLD signals of the biologists' brain were measured by 3.0T fMRI system and data were analyzed using Statistical Parametric Mapping (SPM2). According to our results, the left inferior and middle frontal gyri, the medial prefrontal cortex, the bilateral hippocampus, the occipito-parietal route, the fusiform gyrus, and the cerebellum were activated significantly during the generation of scientific questions. Therefore, we suggested that generating scientific question is associated with analyzing observed situations, using verbal strategy, retrieving episodic memories for comparisons, and feeling cognitive conflicts.