• 제목/요약/키워드: the prediction of the mechanical properties

검색결과 501건 처리시간 0.027초

Prediction of the static and dynamic mechanical properties of sedimentary rock using soft computing methods

  • Lawal, Abiodun I.;Kwon, Sangki;Aladejare, Adeyemi E.;Oniyide, Gafar O.
    • Geomechanics and Engineering
    • /
    • 제28권3호
    • /
    • pp.313-324
    • /
    • 2022
  • Rock properties are important in the design of mines and civil engineering excavations to prevent the imminent failure of slopes and collapse of underground excavations. However, the time, cost, and expertise required to perform experiments to determine those properties are high. Therefore, empirical models have been developed for estimating the mechanical properties of rock that are difficult to determine experimentally from properties that are less difficult to measure. However, the inherent variability in rock properties makes the accurate performance of the empirical models unrealistic and therefore necessitate the use of soft computing models. In this study, Gaussian process regression (GPR), artificial neural network (ANN) and response surface method (RSM) have been proposed to predict the static and dynamic rock properties from the P-wave and rock density. The outcome of the study showed that GPR produced more accurate results than the ANN and RSM models. GPR gave the correlation coefficient of above 99% for all the three properties predicted and RMSE of less than 5. The detailed sensitivity analysis is also conducted using the RSM and the P-wave velocity is found to be the most influencing parameter in the rock mechanical properties predictions. The proposed models can give reasonable predictions of important mechanical properties of sedimentary rock.

Prediction of mechanical properties of limestone concrete after high temperature exposure with artificial neural networks

  • Blumauer, Urska;Hozjan, Tomaz;Trtnik, Gregor
    • Advances in concrete construction
    • /
    • 제10권3호
    • /
    • pp.247-256
    • /
    • 2020
  • In this paper the possibility of using different regression models to predict the mechanical properties of limestone concrete after exposure to high temperatures, based on the results of non-destructive techniques, that could be easily used in-situ, is discussed. Extensive experimental work was carried out on limestone concrete mixtures, that differed in the water to cement (w/c) ratio, the type of cement and the quantity of superplasticizer added. After standard curing, the specimens were exposed to various high temperature levels, i.e., 200℃, 400℃, 600℃ or 800℃. Before heating, the reference mechanical properties of the concrete were determined at ambient temperature. After the heating process, the specimens were cooled naturally to ambient temperature and tested using non-destructive techniques. Among the mechanical properties of the specimens after heating, known also as the residual mechanical properties, the residual modulus of elasticity, compressive and flexural strengths were determined. The results show that residual modulus of elasticity, compressive and flexural strengths can be reliably predicted using an artificial neural network approach based on ultrasonic pulse velocity, residual surface strength, some mixture parameters and maximal temperature reached in concrete during heating.

Sensory Evaluation of Fabric Touch by Free Modulus Magnitude Estimation

  • Cho, Gilsoo;Kim, Chunjeong;Casali, John G.
    • Fibers and Polymers
    • /
    • 제3권4호
    • /
    • pp.169-173
    • /
    • 2002
  • Fabric touch was evaluated psychophysically in order to determine the relationship between mechanical properties and subjective sensation. For subjective touch sensation, eight aspects such as hardness, smoothness, coarseness, coolness, pliability, crispness, heaviness and thickness were evaluated using free modulus magnitude estimation (FEME) technique. KES-FB was used to measure the mechanical properties of fabrics. Woolen fabric with the highest values of WC and weight was evaluated as the coarsest, heaviest and thickest. While silk crepe do chine with the lowest LT, G, 2HG, thickness and weight was rated as smoother and more pliable than any other fabrics. And flax with the highest values of LT and SMD was evaluated as hard, cool and crisp. Fabric touch and satisfaction were predicted well from the mechanical properties, especially from SMD, by regression analysis. Satisfaction for touch increased as smoothness increased.

직조 복합재료의 구조적 특성을 고려한 모델링 기법 및 물성 예측 기법 개발 (Development of Modeling Technique and Material Prediction Method Considering Structural Characteristics of Woven Composites)

  • 최경희;황연택;김희준;김학성
    • Composites Research
    • /
    • 제32권5호
    • /
    • pp.206-210
    • /
    • 2019
  • 직조 구조의 복합재의 쓰임이 자동차, 항공 산업 등 여러 분야로 확장됨에 따라, 직조 복합재의 신뢰성 문제 및 물성예측에 대한 필요성이 대두되었다. 본 연구에서는 직조 구조가 다른 복합재료의 물성 예측을 위한 유한요소해석을 수행하여 실험으로 얻은 정적 물성과의 유사성을 검증하였고, 효과적인 모델링 방법을 개발하였다. 직조 구조의 특성을 반영하기 위하여 모델링은 메소 스케일의 대표 체적 요소(RVE)를 이용하였다. 섬유 다발과 순수 기지를 분리하여 3차원 모델링을 진행하였다. 하신 파괴 기준(Hashin's failure criteria)을 적용하여 요소의 파괴 유무를 판단하였고, 해석 모델은 복합재에 적합한 점진적 파괴 모델을 사용하였다. 최종적으로, 직조 구조에 따른 복합재의 물성을 성공적으로 예측하여 본 모델링 및 해석 기법에 대한 적합성을 검증하였다.

Meso-Scale Approach for Prediction of Mechanical Property and Degradation of Concrete

  • Ueda, Tamon
    • Corrosion Science and Technology
    • /
    • 제3권3호
    • /
    • pp.87-97
    • /
    • 2004
  • This paper presents a new approach with meso scale structure models to express mechanical property, such as stress - strain relationships, of concrete. This approach is successful to represent both uniaxial tension and uniaxial compression stress - strain relationship, which is in macro scale. The meso scale approach is also applied to predict degraded mechanical properties of frost-damaged concrete. The degradation of mechanical properties with frost-damaged concrete was carefully observed. Strength and stiffness in both tension and compression decrease with freezing and thawing cycles (FTC), while stress-free crack opening in tension softening increases. First attempt shows that the numerical simulation can express the experimentally observed degradation by introducing changes in the meso scale structure in concrete, which are assumed based on observed damages in the concrete subjected to FTC. At the end applicability of the meso scale approach to prediction of the degradation by combined effects of salt attack and FTC is discussed. It is shown that clarification of effects of frost damage in concrete on corrosion progress and on crack development in the damaged cover concrete due to corrosion is one of the issues for which the meso scale approach is useful.

고유진동수의 실험값을 사용한 복합재 적층판의 동적 모델링 개선 (Dynamic model updating of the laminated composite plate using natural frequencies measured from modal test)

  • 홍단비;유정규;박성호;김승조
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1998년도 춘계학술대회논문집; 용평리조트 타워콘도, 21-22 May 1998
    • /
    • pp.340-346
    • /
    • 1998
  • In order to improve the prediction of dynamic behavior in structures, several lower vibration modes from FFT analysis through experiments are used to update the mechanical properties followed by the updated frequencies from numerical analysis. Performance index consists of the sum of error norms between the chosen frequencies and corresponding frequencies from numerical analysis. As an updating process of the natural frequencies, the optimization algorithm based on conjugate gradient method is adopted. The gradient of performance index is calculated using the sensitivity of selected eigenvalues with respect to each design parameter. The mechanical properties of lamina, E$\_$l/, E$\_$2/, .nu.$\_$12/ and G$\_$12/, are design parameters for the updating process. The proposed method is applied to predict the dynamic behavior of composite laminated plates of [0]$\_$8T/ and [.+-.45]$\_$2S/ separately or interchangeably. Also, the mixed case for [0]$\_$8T/ and [.+-.45]$\_$2S/ is exarm'ned to check the possibility for the improved prediction generally. The good agreement is obtained between the measured frequencies and the numerical ones. Based on the results for all the cases studied, the proposed approach has a clear potential in characterizing the mechanical properties of composite lamina.

  • PDF

TBM 굴진성능 예측을 위한 모델링 (Modelling for TBM Performance Prediction)

  • 이석원;최순욱
    • 터널과지하공간
    • /
    • 제13권6호
    • /
    • pp.413-420
    • /
    • 2003
  • 본 논문에서는 터널 및 지하공간의 기계화 시공에 있어서 굴진성능을 예측하는 모델링 기법을 고찰하였다. 첫 번째로 세계적으로 가장 잘 알려져 있는 두 가지 모델, 즉 이론적 접근을 기본으로 하고 있는 CSM 모델과 경험적 접근을 기본으로 하고 있는 NTH 모델의 비교를 수행하였다. 두 번째로는, 특별히 Constant Cross Section 커터를 사용하는 경우의 암석 굴삭 원리를 알아보고, 이 원리를 기본으로 하는 이론적 모델을 전개하여 암석특성과 커터 제원만으로 유도되는 절삭력을 구하는 관계식을 고찰하였다. 세 번째로는 기계화 시공에 있어서 굴진성능을 예측하기 위한 일반적인 모델링 기법을 제시하였다. 마지막으로 미국 Colorado School of Mines의 Earth Mechanics Institute(EMI)에서 개발한 CSM 컴퓨터 모델을 소개하고, 이 모델을 TBM 설계에 적용한 사례를 제시하였다.

합성재료 물성치의 수치적 예측 (Numerical Prediction of Mechanical Properties of Composites)

  • 신수봉;고현무
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1997년도 봄 학술발표회 논문집
    • /
    • pp.11-18
    • /
    • 1997
  • Mechanical properties of a composite mixed by components with known material properties are numerically predicted at various volume fractions rather than investigated through experiments. The properties, elastic modulus and Poisson's ratio, are estimated by minimizing the error between the static displacements computed from a model for the composite and those computed from a model of homogeneous and isotropic material. A finite element model for a composite is proposed to distribute different types of material components easily into the model depending on the volume fraction. Mechanical properties of a composite filled with solid mircospheres are predicted numerically through a sample study and the estimated results are compared with experimental results and some theories.

  • PDF

순환골재콘크리트의 탄성계수 추정에 관한 연구 (The prediction of Elastic Modulus of Recycled Aggregate Concrete)

  • 심종성;박철우;박성재;김용재;김현중
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 봄학술 발표회 논문집(II)
    • /
    • pp.105-108
    • /
    • 2005
  • This study investigated fundamental properties of the recycled aggregate which was produced through recent hi-techniques of recycling. In addition, the mechanical properties of the concrete that used the recycled aggregate were compared to the concrete used the natural aggregate. From the results of the mechanical property tests, as the recycled aggregate replacement ratio increased, the compressive strength and elastic modulus decreased. When the recycled aggregate completely replaced the natural aggregate, the compressive strength and elastic modulus was about 15$\%$ and 35$\%$ lower than the natural aggregate concrete, respectively. Based on the test results, equations for prediction of compressive strength and elastic modulus were suggested in the consideration of the amount of the replaced recycled aggregate. Based on the test results and study, the equation predicting the required development length of the recycled aggregate concrete is proposed.

  • PDF

단조용 니켈기지 초내열합금의 조직예측기술 (Microstructure Prediction Technology of Ni-Base Superalloy)

  • 염종택;김정한;홍재근;박노광
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 추계학술대회 논문집
    • /
    • pp.89-92
    • /
    • 2009
  • As a class of materials, Ni-base superalloys are among the most difficult metal alloys to forge together with refractory metals and cobalt-base superalloys. The mechanical properties of Ni-base superalloys depend very much on grain size and the strengthening phases, $\gamma$' ($Ni_3$(Al,Ti)-type) and $\gamma$".($Ni_3$Nb-type). Especially, the control of grain size remains as a sole means for the control of mechanical properties. The grain size and distribution changes of the wrought superalloys during hot working and heat treatment are mainly controlled by the recrystallization and grain growth behaviors. In this presentation, prediction technology of grain size through the computer-aided process design, and numerical modeling for predicting the microstructure evolution of Ni-base superalloy during hot working were introduced. Also, some case studies were dealt with actual forming processes of Ni-base superalloys.

  • PDF