• Title/Summary/Keyword: the patterns of land use change

Search Result 87, Processing Time 0.023 seconds

Analysis of Spatial Changes in the Forest Landscape of the Upper Reaches of Guem River Dam Basin according to Land Cover Change (토지피복변화에 따른 금강 상류 댐 유역 산림 경관의 구조적 변화 분석)

  • Kyeong-Tae Kim;Hyun-Jung Lee;Whee-Moon Kim;Won-Kyong Song
    • Korean Journal of Environment and Ecology
    • /
    • v.37 no.4
    • /
    • pp.289-301
    • /
    • 2023
  • Forests within watersheds are essential in maintaining ecosystems and are the central infrastructure for constructing an ecological network system. However, due to indiscriminate development projects carried out over past decades, forest fragmentation and land use changes have accelerated, and their original functions have been lost. Since a forest's structural pattern directly impacts ecological processes and functions in understanding forest ecosystems, identifying and analyzing change patterns is essential. Therefore, this study analyzed structural changes in the forest landscape according to the time-series land cover changes using the FRAGSTATS model for the dam watershed of the Geum River upstream. Land cover changes in the dam watershed of the Geum River upstream through land cover change detection showed an increase of 33.12 square kilometers (0.62%) of forests and 67.26 square kilometers (1.26%) of urbanized dry areas and a decrease of 148.25 square kilometers (2.79%) in agricultural areas from the 1980s to the 2010s. The results of no-sampling forest landscape analysis within the watershed indicated landscape percentage (PLAND), area-weighted proximity index (CONTIG_AM), average central area (CORE_MN), and adjacency index (PLADJ) increased, and the number of patches (NP), landscape shape index (LSI), and cohesion index (COHESION) decreased. Identification of structural change patterns through a moving window analysis showed the forest landscape in Sangju City, Gyeongsangbuk Province, Boeun County in Chungcheongbuk Province, and Jinan Province in Jeollabuk Province was relatively well preserved, but fragmentation was ongoing at the border between Okcheon County in Chungcheongbuk Province, Yeongdong and Geumsan Counties in Chungcheongnam Province, and the forest landscape in areas adjacent to Muju and Jangsu Counties in Jeollabuk Province. The results indicate that it is necessary to establish afforestation projects for fragmented areas when preparing a future regional forest management strategy. This study derived areas where fragmentation of forest landscapes is expected and the results may be used as basic data for assessing the health of watershed forests and establishing management plans.

Analysis of Spatio-Temporal Patterns of Nighttime Light Brightness of Seoul Metropolitan Area using VIIRS-DNB Data (VIIRS-DNB 데이터를 이용한 수도권 야간 빛 강도의 시·공간 패턴 분석)

  • Zhu, Lei;Cho, Daeheon;Lee, Soyoung
    • Journal of Cadastre & Land InformatiX
    • /
    • v.47 no.2
    • /
    • pp.19-37
    • /
    • 2017
  • Visible Infrared Imaging Radiometer Suite Day-Night Band (VIIRS-DNB) data provides a much higher capability for observing and quantifying nighttime light (NTL) brightness in comparison with Defense Meteorological Satellite-Operational Linescan System (DMSP-OLS) data. In South Korea, there is little research on the detection of NTL brightness change using VIIRS-DNB data. This study analyzed the spatial distribution and change of NTL brightness between 2013 and 2016 using VIIRS-DNB data, and detected its spatial relation with possible influencing factors using regression models. The intra-year seasonality of NTL brightness in 2016 was also studied by analyzing the deviation and change clusters, as well as the influencing factors. Results are as follows: 1) The higher value of NTL brightness in 2013 and 2016 is concentrated in Seoul and its surrounding cities, which positively correlated with population density and residential areas, economic land use, and other factors; 2) There is a decreasing trend of NTL brightness from 2013 to 2016, which is obvious in Seoul, with the change of population density and area of industrial buildings as the main influencing factors; 3) Areas in Seoul, and some surrounding areas have high deviation of the intra-year NTL brightness, and 71% of the total areas have their highest NTL brightness in January, February, October, November and December; and 4) Change of NTL brightness between summer and winter demonstrated a significantly positive relation with snow cover area change, and a slightly and significantly negative relation with albedo change.

Projecting the climatic influences on the water requirements of wheat-rice cropping system in Pakistan (파키스탄 밀-옥수수 재배시스템의 기후변화를 반영한 필요수량 산정)

  • Ahmad, Mirza Junaid;Choi, Kyung-Sook
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.486-486
    • /
    • 2018
  • During the post green revolution era, wheat and rice were the main crops of concern to cater the food security issues of Pakistan. The use of semi dwarf high yielding varieties along with extensive use of fertilizers and surface and ground water lead to substantial increase in crop production. However, the higher crop productivity came at the cost of over exploitation of the precious land and water resources, which ultimately has resulted in the dwindling production rates, loss of soil fertility, and qualitative and quantitative deterioration of both surface and ground water bodies. Recently, during the past two decades, severe climate changes are further pushing the Pakistan's wheat-rice system towards its limits. This necessitates a careful analysis of the current crop water requirements and water footprints (both green and blue) to project the future trends under the most likely climate change phenomenon. This was done by using the FAO developed CROPWAT model v 8.0, coupled with the statistically-downscaled climate projections from the 8 Global Circulation Models (GCMs), for the two future time slices, 2030s (2021-2050) and 2060s (2051-2080), under the two Representative Concentration Pathways (RCPs): 4.5 and 8.5. The wheat-rice production system of Punjab, Pakistan was considered as a case study in exploration of how the changing climate might influence the crop water requirements and water footprints of the two major crops. Under the worst, most likely future scenario of temperature rise and rainfall reduction, the crop water requirements and water footprints, especially blue, increased, owing to the elevated irrigation demands originating from the accelerated evapotranspiration rates. A probable increase in rainfall as envisaged by some GCMs may partly alleviate the adverse impacts of the temperature rise but the higher uncertainties associated with the predicated rainfall patterns is worth considering before reaching a final conclusion. The total water footprints were continuously increasing implying that future climate would profoundly influence the crop evapotranspiration demands. The results highlighted the significance of the irrigation water availability in order to sustain and improve the wheat-rice production system of Punjab, Pakistan.

  • PDF

A preliminary study on the determination of drought stages at the local level (지역 단위 가뭄단계 판단규칙 개발에 관한 연구)

  • Lee, Jongso;Jeon, Daeun;Yoon, Hyeoncheol;Kam, Jonghun;Lee, Sangeun
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.12
    • /
    • pp.929-937
    • /
    • 2023
  • This study aims to develop rules for the Determination of Drought Stages at the Local Level based on the drought cases in Gwangju and Jeollanam-do in 2022-2023. Among the eight drought indicators provided, six indicators (Agricultural drought stage (for paddy), Residential & industrial drought stage, SPI-12, Relative agricultural water storage, Residential water consumption change (for domestic use), Residential water consumption change (for non-domestic use) were confirmed to have statistical correlations with the perceptions of local government officials and experts. Additionally, this drought indicator was applied to a decision tree algorithm to develop rules for determining the severity of drought. Although it presented results similar to those of the existing method presented in previous studies, it showed a significant comparative advantage in explaining the temporal and spatial patterns of drought in the Gwangju and Jeollanam-do.

Analysis of CO2 Distribution Properties Using GOSAT : a Case Study of North-East Asia (GOSAT을 활용한 이산화탄소 분포 특성 분석 : 동북아시아를 사례로)

  • Choi, Jin Ho;Um, Jung Sup
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.21 no.2
    • /
    • pp.85-92
    • /
    • 2013
  • This study determined the spatial distribution characteristics of carbon dioxide in Northeast Asia, connecting land coverage and vegetation index that have influence on concentration and distribution of carbon dioxide measured by GOSAT with GIS spatial analysis method. The results visibly showed that the spatial distribution of carbon dioxide had different patterns in dependent on the present status of land use in its surrounding area. Such high concentration of carbon dioxide was formed in developed sites like cities while forest areas showed low concentration of it. We also found that there were relatively high negative(-) correlations between carbon dioxide and vegetation, in statistically significant level. It is expected to be used as a basic data for establishing measures to reduce greenhouse gas in the future.

County-Based Vulnerability Evaluation to Agricultural Drought Using Principal Component Analysis - The case of Gyeonggi-do - (주성분 분석법을 이용한 시군단위별 농업가뭄에 대한 취약성 분석에 관한 연구 - 경기도를 중심으로 -)

  • Jang, Min-Won
    • Journal of Korean Society of Rural Planning
    • /
    • v.12 no.1 s.30
    • /
    • pp.37-48
    • /
    • 2006
  • The objectives of this study were to develop an evaluation method of regional vulnerability to agricultural drought and to classify the vulnerability patterns. In order to test the method, 24 city or county areas of Gyeonggi-do were chose. First, statistic data and digital maps referred for agricultural drought were defined, and the input data of 31 items were set up from 5 categories: land use factor, water resource factor, climate factor, topographic and soil factor, and agricultural production foundation factor. Second, for simplification of the factors, principal component analysis was carried out, and eventually 4 principal components which explain about 80.8% of total variance were extracted. Each of the principal components was explained into the vulnerability components of scale factor, geographical factor, weather factor and agricultural production foundation factor. Next, DVIP (Drought Vulnerability Index for Paddy), was calculated using factor scores from principal components. Last, by means of statistical cluster analysis on the DVIP, the study area was classified as 5 patterns from A to E. The cluster A corresponds to the area where the agricultural industry is insignificant and the agricultural foundation is little equipped, and the cluster B includes typical agricultural areas where the cultivation areas are large but irrigation facilities are still insufficient. As for the cluster C, the corresponding areas are vulnerable to the climate change, and the D cluster applies to the area with extensive forests and high elevation farmlands. The last cluster I indicates the areas where the farmlands are small but most of them are irrigated as much.

Study on Improvement of Calibration/Validation of SWAT for Spatio-Temporal Analysis of Land Uses and Rainfall Patterns (강수패턴과 토지이용의 시공간적 분석을 위한 SWAT모형의 검보정 개선방안 연구)

  • Lee, Ji-Won;Kum, Donghyuk;Kim, Bomchul;Kim, Young Sug;Jeong, Gyo-Cheol;Kim, Ki-Sung;Choi, Joong-Dae;Lim, Kyoung Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.3
    • /
    • pp.365-376
    • /
    • 2013
  • The purpose of this study was to evaluate effects of spatio-temporal changes in land uses and rainfall magnitude using the Soil and Water Assessment Tool (SWAT). Prior of application of the model to real-world problem, the model should be calibrated and validated properly. In most modeling approaches, the validation process is done assuming no significant changes occurring at the study watershed between calibration and validation periods, which is not proper assumption for agricultural watersheds. If simulated results obtained with calibrated parameters match observed data with higher accuracy for validation period, this does not always mean the simulated result represents rainfall-runoff, pollutant generation and transport mechanism for validation period because temporal and spatial variables and rainfall magnitude are often not the same. In this study SWAT was applied to Mandae study watershed in Korea to evaluate effects of spatio-temporal changes in landuses using 2009 and 2010 crop data for each field at the watershed. The Nash-Sutcliffe model efficiency (NSE) values for calibration and validation with either 2009 or 2010 was evaluated and the NSE value for calibration with 2009 and calibration with 2010 were compared. It was found that if there is substantial change in land use and rainfall, model calibration period should be determined to reflect those changes. Through these approaches, inherent limitation of the SWAT, which does not consider changes in land uses over the simulation period, was investigated. Also, Effects of changes in rainfall magnitude during calibration process were analyzed.

Development of a decision framework for the designing and implementation of a sustainable underground water storage system

  • Gladden, Lennox Alexander;Park, Namsik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.244-244
    • /
    • 2015
  • Managed Aquifer Recharge (MAR) in the form of Aquifer Storage and Recovery (ASR) systems are being applied for numerous water augmentation projects both in developed and developing countries. Given the onset of Climate Change and its influence on weather patterns and land use, it has been acknowledged the utilization of this technology will be ever increasing. This technique like all others does have its drawbacks or disadvantages, whereby to overcome these drawbacks or disadvantages it is recommended that logical planning process be followed. In this study, we developed a decision framework known as "Decision framework for the planning, designing, construction/testing and implementation of subsurface water storage system" to further standardize the planning and design process of subsurface water storage system to increase the probability of having a successful ASR/ASTR project. The formulation of this framework was based on earlier frameworks, guidelines, published papers and technical reports which were compiled into a data collection database. The database of which consider both qualitative and quantitative aspect for example recharge objectives, site location, water chemistry of the native, source and recovered water, aquifer characteristics(hydraulic conductivity, transmissivity, porosity), injection/pumping rate, ecological constraints, societal restrictions, regulatory restrictions etc. The assimilation of these factors into a singular framework will benefit the broad spectrum of stakeholder as it maps the chronological order under which ASR project should be undertaken highlighting at each stage the feasibility of the project. The final stage of which should result in fully operational ASR system. The framework was applied to two case studies and through the application of a modified ASR site selection suitability index (Brown et al., 2005) a score was derived to identify the performance of each site. A high score of which meant a maximize chance of success given the reduce presence of project constraints.

  • PDF

Resilience Assessment for Aquifers close to Groundwater Wells in the Nakdong River Estuary (낙동강 하구 지하수 관정 주변 대수층의 리질리언스 평가)

  • Soonyoung Yu;Ho-Rim Kim;Eun-Kyeong Choi;Sung-Wook Kim;Dong-Woo Ryu;Yongcheol Kim
    • Journal of Soil and Groundwater Environment
    • /
    • v.28 no.3
    • /
    • pp.12-28
    • /
    • 2023
  • Each national groundwater monitoring well showed distinct change patterns in groundwater levels and electrical conductivity (EC) in the Nakdong River Estuary, implying different external forces (EFs) on each well. According to the annual average data in 1997-2020, seawater was invaded into Well C. The desalination rate of -1,062 µS/cm/year represents the adaptive capacity of the well to seawater intrusion. The water levels and EC in Well E responded to precipitation, indicating the low absorptive capacity to climate changes. Meanwhile, Well B showed constant increases in water levels, suggesting that problems by rising groundwater should be considered in the study area where confined aquifers are overlaid by clay aquitards. The other wells showed consistent water levels and EC, indicating resilience to EFs. Here, resilience is the capacity of a well to resist changes by EFs, including the absorptive and adaptive capacity. The resilience of Wells E and F to climate changes was quantitatively compared using a resilience cost (RC). The RC showed Well F was more resilient than Well E, and the bedrock aquifer was more resilient than the alluvium aquifer, supporting the usefulness of RC. The resilience assessment against EFs (e.g., changes in land use and climate) helps sustainable groundwater management.

Characteristics of Thermal Performance on the Different Ambient Air Temperatures of Green Roof Plants

  • Han, Seung Won;Park, Joon Sung;Kim, Jae Soon;Jeong, Myung Il
    • Korean Journal of Environmental Biology
    • /
    • v.34 no.4
    • /
    • pp.272-280
    • /
    • 2016
  • Changes in land use and increase in urban energy consumption influence urban life. This study analyzed the characteristics and patterns of urban heat and presents management schemes to generate a comfortable and sustainable urban environment. The study aimed to demonstrate the positive effects of artificial ground greening on improving the microclimate through evapotranspiration using perennial herbs. We have designed a chamber that could control constant temperature and humidity, measure temperature reductions in each plant and changes in sensible heat and latent heat. This study identified Sedum kamtschaticum as the most effective plant in controlling temperature. At $22^{\circ}C$, $3.2^{\circ}C$ temperature reduction was observed, whereas four other plants showed a $1.5^{\circ}C$ reduction. At $25^{\circ}C$, $2.0^{\circ}C$ temperature reduction was observed. On the other hand, the use of Sedum sarmentosum resulted in the lowest effect. Zoysia japonica is the most commonly used ground covering plant, although the temperature reduction of Lysimachia nummularia was more effective at high temperature conditions. Sensible heat and latent heat were calculated to evaluate the thermal performance of energy. At a temperature >$30^{\circ}C$, L. nummularia and S. sarmentosum emitted high latent heat. In this study, we analyzed the thermal performance of green roof perennial plants; in particular, we analyzed the evapotranspiration and temperature reduction of each plant. Since the substrate depth and types, plant species, and seasonal change may influence temperature reduction and latent heat of green roofs, further studies are necessary.