• Title/Summary/Keyword: the number of layer

Search Result 3,049, Processing Time 0.032 seconds

Experimental Study on the Behaviour of Interfacial Layer in Saltwater Wedge (정상염수쐐기 경계층 거동에 대한 실험적 연구)

  • Lyu, Siwan;Kim, Young Do;Choi, Jae Hoon;Seo, Il Won;Kwon, Jae Hyun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.6
    • /
    • pp.833-842
    • /
    • 2009
  • A series of laboratory experiments has been performed to investigate the behaviour of interfacial layer of saltwater wedge in estuary. Experimental conditions have been established according to densimetric Froude number, which is a dimensionless number comparing inertia force with buoyancy due to the density difference. To observe the behaviour of saltwater wedge, conductivity meter has been used to detect salinity. Time averaged and temporal variation of observed properties have been analyzed to determine and investigate the interfacial layer. The location and profile of interfacial layers have shown the dependency on densimetric Froude number. The thickness of interfacial layer has been also dependent on the variation of densimetric Froude number.

Effect of Ceramic-Electrode Interface on the Electrical Properties of Multilayer Ceramic Actuators (적층형 세라믹 액츄에이터의 세라믹-전극간 계면이 전기적 특성에 미치는 영향에 대한 연구)

  • 하문수;정순종;송재성;이재신
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.10
    • /
    • pp.896-901
    • /
    • 2002
  • The polarization and strain behavior of multilayer ceramic actuators fabricated by tape casting using a PNN-PZT ceramics were investigated in association with electrode size and internal layer number. Spontaneous polarization and strain decreased with increasing electrode size. In addition, the increase of internal layer number brought reduced spontaneous polarization and increased the field-induced strain. Because the actuators structure is designed to stack ceramic layer and electrode layer alternatively, the ceramic-electrode interfaces may act as a resistance to motion of domain wall. To analyze the effect of ceramic-electrode interface, the diffraction intensity ratio of (002) to (200) planes was calculated from X-ray diffraction patterns of samples subjected to a voltage of 200 V. The diffraction intensity ratio of (002) to (200) planes was decreased with increasing electrode size and internal layer number. The diffraction intensity ratio and straining behavior analyses indicate that the Polarization and strain were affected by the amount of 90°domain decreasing with increasing electrode size and internal layer number. Consequently, the change of polarization and displacement with respect to electrode size and layer number is likely to be caused by readiness of the domain wall movement around the interface.

A Numerical Analysis of Characteristics of Combined Heat Transfer in Laminar Layer Along Cylinderical Periphery by P-N Method (P-N 근사법을 이용한 원관주위 층류 경계층내 조합 열전달 전달 특성 해석)

  • 이종원;이창수
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.19 no.2
    • /
    • pp.10-19
    • /
    • 1995
  • Heat trnasfer for absorbing and emitting media in laminar layer along the cylinders has been analyzed. Governing equation are transformed to local nonsimilarity equations by the dimensional analysis. The effects of the Stark number, Prandtl number, Optical radius and wall emissivity are mainly investigated. For the formal solution a numerical integration is performed and the results are compared with those obtained by P-1 and P-3 approximation. The results show that boundary layers consist of conduction-convection-radiation layer near the wall and convection-radiation layer far from the wall. As the Stark number of wall emissivity increases the local radiative heat flux is increased. The Pradtl number or curvature variations do not affect the radiative heat flux from the wall, but The Prandtl number or wall emissivity variations affect the conduction heat flux. Consequently the total heat flux from the wall are affected by the Prandtl number or wall emissivity variation.

  • PDF

Electrical Properties of Ring-type Multilayer Piezoelectric Actuator (원환형 적층 압전 액츄에이터의 전기적 특성)

  • Kim, Kook-Jin;Yoo, Ju-Hyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.10
    • /
    • pp.869-872
    • /
    • 2007
  • In this study, in order to develop low temperature sintering ultrasonic nozzle, single-layer and multilayer ring-type piezoelectric actuators were manufactured using PMN-PNN-PZT ceramics, And then the electrical properties were investigated. A ring-type piezoelectric actuator was modeled by ATILA program using finite element method(FEM). The piezoelectric actuator dimension was $\Phi26.5$ (outer diameter), $\Phi12$ (inner diameter), 3.5 mm (thickness). By FEM analysis, resonant and anti-resonant frequencies were appeared as 56.7 kHz and 61.5 kHz. The displacement increased with the increases of the number of layer. Based on the result, ring-type multilayer piezoelectric actuators were manufactured at low co-firing temperature of $940^{\circ}C$. The resonant resistance decreased with the increases of the number of layer. And also, the capacitance increased with the increases of the number of layer. The mechanical quality factor (Qm) decreased with the increases of the number of layer.

A New Experiment on Interaction of Normal Shock Wave and Turbulent Boundary Layer in a Supersonic Diffuser (초음속디퓨져에서 발생하는 수직충격파의 난류경계층의 간섭에 관한 실험)

  • 김희동;홍종우
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.9
    • /
    • pp.2283-2296
    • /
    • 1995
  • Experiments of normal shock wave/turbulent boundary layer interaction were conducted in a supersonic diffuser. The flow Mach number just upstream of the normal shock wave was in the range of 1.10 to 1.70 and Reynolds number based upon the turbulent boundary layer thickness was varied in the range of 2.2*10$^{[-994]}$ -4.4*10$^{[-994]}$ . The wall pressures in streamwise and spanwise directions were measured for two test cases, in which the turbulent boundary layer thickness incoming into the supersonic diffuser was changed. The results show that the interactions of normal shock wave with turbulent boundary layer in the supersonic diffuser can be divided into three patterns, i.e., transonic interaction, weak interaction and strong interaction, depending on Mach number. The weak interactions generate the post-shock expansion which its strength is strong as the Mach number increases and the strong interactions form the pseudo-shock waves. From the spanwise measurements of wall pressure, it is known that if the flow Mach number is low, the interacting flow fields essentially appear two-dimensional, but they have an apparent 3-dimensionality for the higher Mach numbers.

Double-Diffusive Convection Due to Heating from Below in a Rotating Cylindrical Cavity (회전하는 원통형밀폐용기내의 아랫면가열에 의한 이중확산대류에 관한 실험적 연구)

  • 강신형;이태홍;이진호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.7
    • /
    • pp.1731-1740
    • /
    • 1995
  • Experimental investigations have been made to study the double-diffusive nature of convection of an initially stratified salt-water solution due to heating from below in a rotating cylindrical cavity. The objective is to examine the flow phenomena and the heat transfer characteristics according to the changes in temperature gradient, concentration gradient and rotating velocity of cavity. Thermal and solutal boundary conditions at side wall are adiabatic and impermeable, respectively. The top and bottom plate are maintained each at constant temperature and concentration. The cavity is put into a state of solid body rotation. Like the stationary case, the types of initially-formed flow pattern are classified into three regimes depending on the effective Rayleigh number and Taylor number; stagnant flow regime, single mixed-layer flow regime and successively formed multi-mixed layer flow regime. At the same effective Rayleigh number, the number of initially-formed mixed layer and its growth rate decrease as the effect of rotation increases. The temperature and concentration profiles are both uniform in each layer due to convective mixing in the layered-flow regime, but look both liner in stagnant flow regime and single mixed-layer flow regime. At the interface between adjacent layers, the temperature changes smoothly but the concentration changes rapidly.

Characteristics and Stability of Compositional Convection in Binary Solidification with a Constant Solidification Velocity (일정한 응고속도를 갖는 2성분 응고에서 조성 대류의 특성 및 안정성)

  • Hwang, In Gook
    • Korean Chemical Engineering Research
    • /
    • v.52 no.2
    • /
    • pp.199-204
    • /
    • 2014
  • In binary solidification compositional convection in a porous mushy layer influences the quality of the final products. We consider the mushy layer solidifying from below with a constant solidification velocity. The disturbance equations for the mushy layer are derived using linear stability theory. The basic-state temperature fields and the distribution of the porosity in the mushy layer are investigated numerically. When the superheat is large, the thickness of the mushy layer is relatively small compared to the thickness of the thermal boundary layer. With decreasing the superheat the critical Rayleigh number based on the thickness of the mushy layer increases and the mushy layer becomes stable to the compositional convection. The critical Rayleigh number obtained from the continuity conditions of temperature and heat flux at the mush-liquid interface is smaller than that from the isothermal condition at the upper boundary of the mushy layer.

Effect of Reynolds number on compressible convex-corner flows

  • Chung, Kung-Ming;Chang, Po-Hsiung;Chang, Keh-Chin
    • Advances in aircraft and spacecraft science
    • /
    • v.1 no.4
    • /
    • pp.443-454
    • /
    • 2014
  • An experimental study was conducted to investigate the effect of Reynolds number on compressible convex-corner flows, which correspond to an upper surface of a deflected flap of an aircraft wing. The flow is naturally developed along a flat plate with two different lengths, resulting in different incoming boundary layer thicknesses or Reynolds numbers. It is found that boundary layer Reynolds number, ranging from $8.04{\times}10^4$ to $1.63{\times}10^5$, has a minor influence on flow expansion and compression near the corner apex in the transonic flow regime, but not for the subsonic expansion flow. For shock-induced separated flow, higher peak pressure fluctuations are observed at smaller Reynolds number, corresponding to the excursion phenomena and the shorter region of shock-induced boundary layer separation. An explicit correlation of separation length with deflection angle is also presented.

A Naphthalene Sublimation Study on Heat/Mass Transfer for Flow over a Flat Plate

  • Park, Jong-Hark;Yoo, Seong-Yeon
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.7
    • /
    • pp.1258-1266
    • /
    • 2004
  • It is important to completely understand heat/mass transfer from a flat plate because it is a basic element of heat/mass transfer. In the present study, local heat/mass transfer coefficient is obtained for two flow conditions to investigate the effect of boundary layer using the naphthalene sublimation technique. Obtained local heat/mass transfer coefficient is converted to dimensionless parameters such as Sherwood number, Stanton number and Colburn j-factor. These also are compared with correlations of laminar and turbulent heat/mass transfer from a flat plate. According to experimental results, local Sherwood number and local Stanton number are in much better agreement with the correlation of turbulent region rather than laminar region, which means analogy between heat/mass transfer and momentum transfer is more suitable for turbulent boundary layer. But average Sherwood number and average Colburn j-factor representing analogy between heat/mass transfer and momentum transfer are consistent with the correlation of laminar boundary layer as well as turbulent boundary layer.

New Approach to Optimize the Size of Convolution Mask in Convolutional Neural Networks

  • Kwak, Young-Tae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.1
    • /
    • pp.1-8
    • /
    • 2016
  • Convolutional neural network (CNN) consists of a few pairs of both convolution layer and subsampling layer. Thus it has more hidden layers than multi-layer perceptron. With the increased layers, the size of convolution mask ultimately determines the total number of weights in CNN because the mask is shared among input images. It also is an important learning factor which makes or breaks CNN's learning. Therefore, this paper proposes the best method to choose the convolution size and the number of layers for learning CNN successfully. Through our face recognition with vast learning examples, we found that the best size of convolution mask is 5 by 5 and 7 by 7, regardless of the number of layers. In addition, the CNN with two pairs of both convolution and subsampling layer is found to make the best performance as if the multi-layer perceptron having two hidden layers does.