• 제목/요약/키워드: the nifA gene

검색결과 16건 처리시간 0.018초

Polyphasic Analysis of the Bacterial Community in the Rhizosphere and Roots of Cyperus rotundus L. Grown in a Petroleum-Contaminated Soil

  • Jurelevicius, Diogo;Korenblum, Elisa;Casella, Renata;Vital, Ronalt Leite;Seldin, Lucy
    • Journal of Microbiology and Biotechnology
    • /
    • 제20권5호
    • /
    • pp.862-870
    • /
    • 2010
  • Cyperus rotundus L. is a perennial herb that was found to be dominating an area in northeast Brazil previously contaminated with petroleum. In order to increase our knowledge of microorganism-plant interactions in phytoremediation, the bacterial community present in the rhizosphere and roots of C. rotundus was evaluated by culture-dependent and molecular approaches. PCR-DGGE analysis based on the 16S rRNA gene showed that the bacterial community in bulk soil, rhizosphere, and root samples had a high degree of similarity. A complex population of alkane-utilizing bacteria and a variable nitrogen-fixing population were observed via PCR-DGGE analysis of alkB and nifH genes, respectively. In addition, two clone libraries were generated from alkB fragments obtained by PCR of bulk and rhizosphere soil DNA samples. Statistical analyses of these libraries showed that the compositions of their respective populations were different in terms of alkB gene sequences. Using culturedependent techniques, 209 bacterial strains were isolated from the rhizosphere and rhizoplane/roots of C. rotundus. Dot-blot analysis showed that 17 strains contained both alkB and nifH gene sequences. Partial 16S rRNA gene sequencing revealed that these strains are affiliated with the genera Bosea, Cupriavidus, Enterobacter, Gordonia, Mycoplana, Pandoraea, Pseudomonas, Rhizobium, and Rhodococcus. These isolates can be considered to have great potential for the phytoremediation of soil with C. rotundus in this tropical soil area.

헬리코박터 파일로리에서 fdxA 유전자에 의한 메트로니다졸 내성 조절 기전 연구 (Mechanism of Metronidazole Resistance Regulated by the fdxA Gene in Helicobacter pylori.)

  • 남원희;이선미;김은실;김진호;정진용
    • 생명과학회지
    • /
    • 제17권5호
    • /
    • pp.723-727
    • /
    • 2007
  • 본 연구는 H. pylori에서 metronidazole내성에 관여하는 유전자를 발견하고 이들 유전자들의 상호 조절 기전을 밝힘으로서 위장질환의 원인균인 H. pylori를 퇴치하기 위한 기본바탕을 마련하고자 수행되었다. 우선적으로 metronidazole 내성을 조절하는 유전자인 fdxA(ferredoxin)에 의한 metronidazole 내성 조절 기전을 밝히기 위하여 다음의 연구를 수행하였다. Type I 균주인 26695균주의 fdxA 유전자에 chloramphenicol 내성 유전자를 삽입하여 결손돌연변이주를 구축하였다. fdxA의 비활성화에 의한 rdxA 및 frxA 유전자의 발현을 알아보기 위하여 2-D electrophoresis와 MALDI-TOP-MS을 이용하여 fdxA 유전자의 비활성화에 의해 over-expressed protein과 under-expressed protein을 검색하였다. 본 실험의 결과로 type I 균주인 26695에서 fdxA 유전자를 비활성화시킨 결과 frxA 유전자의 발현양이 증가함을 northern으로 확인하였으며, 또한 fdxA유전자의 downstream에 위치한 유전자들이 H. pylori의 생존에 중요한 역할은 한다는 것을 알 수 있었다. 또한 2-D electrophoresis와 MALDI-TOP-MS을 이용하여 fdxA 유전자의 inactivation에 의해 over-expressed protein으로 nifU-like protein(HP0221), frxA(HP0642), nonheme ferritin(HP0653)와 아직 기능이 밝혀지지 않은 hypothetical protein(HP0902) 등이 발견되었다. 그리고 5'-methylthioadenosine/S-adenosylhomocysteine nucleosidase(HP0089), (3R)-hydroxymyristoyl ACP dehydratase(HP1376)과 thioredoxin(HP1458)등이 under-expressed protein으로 발견되었다.

New report on cyanophyte in Korea, Microseira wollei (Farlow ex Gomont) G.B.McGregor and Sendall ex Kennis (Oscillatoriaceae)

  • Bae, Eun Hee;Kang, Jae-Shin;Park, Chong-Sung
    • Journal of Species Research
    • /
    • 제9권3호
    • /
    • pp.210-217
    • /
    • 2020
  • Microseira wollei (Farlow ex Gomont) G.B.McGregor and Sendall ex Kennis, a mat-forming filamentous harmful cyanobacterium, has historically been found in the United States. Microseira wollei produces neurotoxins and hepatotoxins which affect declining water quality. In the present research, we report of unrecorded M. wollei with morphology, TEM anatomy, molecular phylogeny on the Korean population. Based on 16S rRNA gene sequences, Korean population were different by 0.02% (2 bp) to the Japanese population, 1.2-1.3% to the Australian population, and 2.5-3.7% to the United States populations. nifH gene sequences were 8.4-8.7% different to Australian ones and 3.5-3.8% to other population, however molecular phylogenetic analysis of M. wollei living in Korea revealed monophyly with the geographical populations of U.S.A., Australia, and other geographical populations. Since the mat of M. wollei has been reported to be maintained for several years in other countries, it is necessary further investigate the seasonal and regional distribution of this species in Korea.

Diversity of Root-Associated Paenibacillus spp. in Winter Crops from the Southern Part of Korea

  • CHEONG HOON;PARK SOO-YOUNG;RYU CHOONG-MIN;KIM JIHYUN F.;PARK SEUNG-HWAN;PARK CHANG SEUK
    • Journal of Microbiology and Biotechnology
    • /
    • 제15권6호
    • /
    • pp.1286-1298
    • /
    • 2005
  • The genus Paenibacillus is a new group of bacilli separated from the genus Bacillus, and most of species have been isolated from soil. In the present study, we collected 450 spore-forming bacilli from the roots of winter crops, such as barley, wheat, onion, green onion, and Chinese cabbage, which were cultivated in the southern part of Korea. Among these 450 isolates, 104 Paenibacillus-like isolates were selected, based on their colony shape, odor, color, and endospore morphology, and 41 isolates were then finally identified as Paenibacillus spp. by 16S rDNA sequencing. Among the 41 Paenibacillus isolates, 23 were classified as P. polymyxa, a type species of the genus Paenibacillus, based on comparison of the 16S rDNA sequences with those of 32 type strains of the genus Paenibacillus from the GenBank database. Thirty-five isolates among the 41 Paenibacillus isolates exhibited antagonistic activity towards plant fungal and bacterial pathogens, whereas 24 isolates had a significant growth-enhancing effect on cucumber seedlings, when applied to the seeds. An assessment of the root-colonization capacity under gnotobiotic conditions revealed that all 41 isolates were able to colonize cucumber roots without any significant difference. Twenty-one of the Paenibacillus isolates were shown to contain the nifH gene, which is an indicator of $N_{2}$ fixation. However, the other 20 isolates, including the reference strain E681, did not incorporate the nifH gene. To investigate the diversity of the isolates, a BOX-PCR was performed, and the resulting electrophoresis patterns allowed the 41 Paenibacillus isolates to be divided into three groups (Groups A, B, and C). One group included Paenibacillus strains isolated mainly from barley or wheat, whereas the other two groups contained strains isolated from diverse plant samples. Accordingly, the present results showed that the Paenibacillus isolates collected from the rhizosphere of winter crops were diverse in their biological and genetic characteristics, and they are good candidates for further application studies.

한반도 중부지방의 벼 뿌리로부터 내생 세균의 분리와 특성 분석 (Isolation and Characterization of Endophytic Bacteria from Rice Root Cultivated in Korea)

  • 박수영;양성현;최수근;김지현;김종국;박승환
    • 한국미생물·생명공학회지
    • /
    • 제35권1호
    • /
    • pp.1-10
    • /
    • 2007
  • 한반도 중부지방인 충청남북도 7개 지역에서 재배되고 있는 벼 시료 21점을 채집하여 이들의 뿌리를 표면살균 한 후 내생균을 44주 분리하고 내생성 검정 시스템을 통해 정착력이 상대적으로 우수한 균주를 최종 16주 확보 하였다. 이들의 분리빈도는 뿌리 생체중 1g당 $10^{3-5}$ CFU로 나타났다. 흥미롭게도 이중 7주가 Eurkholderia 속 균으로 동정되어 기존의 다른 벼 내생세균 연구 결과와는 다른 특징을 보였다. 또한 GFP tagging 방법을 이용하여 분리균주 중 하나인 Enterobacter sp. KJ001 균주에 대해 뿌리조직 내 colonization 위치를 확인해본 결과 뿌리 조직 중 관다발 주변에 군락을 이루고 있음을 관찰하였다. Burkholderia 분리주들은 국내 재배 벼에서 높은 빈도로 분리되며 in vitro상에서 광범위한 진균성 식물병원균에 대해 우수한 길항력과 더불어 대부분 질소고정 관련 유전자인 nifH를 가지는 점으로 보아 질소고정에 의해 식물생육에 도움을 줄 수 있을 것으로 예측되며 실제로 오이 유묘의 생장을 30% 이상 촉진하는 효과를 보여 식물병 억제 및 감소와 더불어 작물의 생장 촉진 및 생산성 증대에 활용가치가 높은 내생균으로 사료된다.

Short-Term Effect of Elevated Temperature on the Abundance and Diversity of Bacterial and Archaeal amoA Genes in Antarctic Soils

  • Han, Jiwon;Jung, Jaejoon;Park, Minsuk;Hyun, Seunghun;Park, Woojun
    • Journal of Microbiology and Biotechnology
    • /
    • 제23권9호
    • /
    • pp.1187-1196
    • /
    • 2013
  • Global warming will have far-reaching effects on our ecosystem. However, its effects on Antarctic soils have been poorly explored. To assess the effects of warming on microbial abundance and community composition, we sampled Antarctic soils from the King George Island in the Antarctic Peninsula and incubated these soils at elevated temperatures of $5^{\circ}C$ and $8^{\circ}C$ for 14 days. The reduction in total organic carbon and increase in soil respiration were attributed to the increased proliferation of Bacteria, Fungi, and Archaea. Interestingly, bacterial ammonia monooxygenase (amoA) genes were predominant over archaeal amoA, unlike in many other environments reported previously. Phylogenetic analyses of bacterial and archaeal amoA communities via clone libraries revealed that the diversity of amoA genes in Antarctic ammonia-oxidizing prokaryotic communities were temperature-insensitive. Interestingly, our data also showed that the amoA of Antarctic ammonia-oxidizing bacteria (AOB) communities differed from previously described amoA sequences of cultured isolates and clone library sequences, suggesting the presence of novel Antarctic-specific AOB communities. Denitrification-related genes were significantly reduced under warming conditions, whereas the abundance of amoA and nifH increased. Barcoded pyrosequencing of the bacterial 16S rRNA gene revealed that Proteobacteria, Acidobacteria, and Actinobacteria were the major phyla in Antarctic soils and the effect of short-term warming on the bacterial community was not apparent.