• Title/Summary/Keyword: the joint angle

Search Result 1,437, Processing Time 0.031 seconds

In Vivo Three-dimensional Motion Analysis of the Shoulder Joint During Internal and External Rotation at 90 Degrees of Abduction, using wide Gantry MRI.

  • Koishi, Hayato;Goto, Akira;Yoshikawa, Hideki;Sugamoto, Kazuomi
    • The Academic Congress of Korean Shoulder and Elbow Society
    • /
    • 2009.03a
    • /
    • pp.175-175
    • /
    • 2009
  • Despite its importance for the understanding of joint kinematics in vivo, there has been few studies about shoulder joints. The purpose of this study is to analyze the glenohumeral joint during internal and external rotation at 90 degrees of abduction using in vivo noninvasive motion analysis system. MRI was performed for the following seven positions from maximum internal rotation to maximum external rotation at intervals of 30 degrees. We used 3D-gradient echo sequencing (TR: 12 ms, TE: 5.8 ms, 0.8 mm-slice thickness). Our method is based on matching three-dimensional MR images by the similarity of the image intensity. We analyzed the in vivo three-dimensional motions of the glenohumeral and scapulothoracic joint during this motion. In scapla plane, the mean rotation angle of the glenohumeral join was 105.5 degrees ($SD{\pm}39.0^{\circ}$). The mean rotation angle of the scapulothracic joint was 27.5 degrees ($SD\;{\pm}\;7.7^{\circ}$). The contribution ratio is almost 3.8:1 of glenohumeral and scapulothracic joint respectively.

  • PDF

Factors Affecting Tibial Tuberosity-Trochlear Groove Distance in Recurrent Patellar Dislocation

  • Prakash, Jatin;Seon, Jong-Keun;Ahn, Hyeon-Woon;Cho, Kyu-Jin;Im, Chae-Jin;Song, Eun Kyoo
    • Clinics in Orthopedic Surgery
    • /
    • v.10 no.4
    • /
    • pp.420-426
    • /
    • 2018
  • Background: The tibial tuberosity-trochlear groove (TT-TG) distance is used to determine the necessity of tibial tubercle osteotomy. We conducted this study to determine the extent to which each of the tibial tuberosity lateralization, trochlear groove medialization, and knee rotation angle affects the TT-TG distance in both normal and patella dislocated patients and thereby scrutinize the rationale for tuberosity transfer based on the TT-TG distance. Methods: Retrospective analysis of rotational profile computed tomography was done for patella dislocated and control group patients. Femoral anteversion, tibial torsion, knee rotation angle, tuberosity lateralization, and trochlear groove medialization were assessed in all patients. Relationship of these parameters with the TT-TG distance was investigated to evaluate their effects on the TT-TG distance. Results: We observed that the patellar dislocation group, compared to the control group, had increased TT-TG distance (mean, 19.05 mm vs. 9.02 mm) and greater tuberosity lateralization (mean, 64.1% vs. 60.7%) and tibial external rotation in relation to the femur (mean, $7.9^{\circ}$ vs. $-0.81^{\circ}$). Conclusions: Tuberosity lateralization and knee rotation were factors affecting patellar dislocation. These factors should be considered in addition to the TT-TG distance to determine the need for tibial tubercle osteotomy in patients with patellar dislocation.

shear Tests on female-to-female Type Joint between Precast Concrete Bridge Decks (프리캐스트 콘크리트 교량바닥판 female-female이음부의 전단실험)

  • 김영진;김영진;김종희
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.6
    • /
    • pp.161-168
    • /
    • 1998
  • Increase of traffic volume in recent years results in deterioration of the bridge slab, which is directly subjected ot vehicle loads. Where extensive repair is necessary, replacement or enhancement of load carrying capacity using full depth precast concrete deck is often the most practical solution. Precast deck system has transverse joints between adjacent precast decks. Vertical shear forces occur when a vehicle wheel load is carried by precast decks and the joints are used to transfer the load to an adjacent deck. Effective load transfer between precast decks is critical for integral behavior. Finite element analysis and tests were run on the proposed femal-to-female type joint. 18 joint specimens were tested to investigate the effects of angle. D/H, and confining stress under static load. Results indicate joint with angle of 60$^{\circ}$ and D/H of 1/4 shows the improved load carrying capacity on crack. It is effective in protecting the cracking of joints to keep the joint in compression using confining stress.

The Kinematical Analysis of Straddle Jump to Push up Motion on Sports Aerobics (스포츠 에어로빅스 Straddle Jump to Push up 동작의 운동학적 분석)

  • Kim, Cha-Nam
    • Korean Journal of Applied Biomechanics
    • /
    • v.12 no.2
    • /
    • pp.77-90
    • /
    • 2002
  • This study serves the purpose of understanding about correct jump and landing motion through Kinematical Analysis of Straddle Jump to Push up Motion at target by four elite sports aerobics athletes have more than four years career. And further more that make good assistance for coaches effective guidance through an offer basic data and correct diagnosis, evaluate of motions. It was picture-taked by two-video camera for Straddle Jump to Push up Motions. Camera speeds are 60 frame/sec. There are Kinematical Variation elements for analysis, the displacement of COG, each angle displacement left/right of shoulder-joint, each angle displacement left/right of knee-joint and each speed left/right of tip of the toes. Every each person accomplished severaly 3 times and we have acquired this conclusion. The conclusions were as follows; 1. Each situation for displacement of COG showed low height of COG by phase 1, 4, 5(79.05${\pm}9.07,\;46.41{\pm}3.65,\;18.66{\pm}0.54cm$) and It showed high height of COG by phase 2, 3($120.80{\pm}6.13,\;148.12{\pm}9.19cm$). 2. Each displacement left, right of shoulder-joint flexion by phase 1($91.07{\pm}8.30,\;90.77{\pm}5.72$deg/sec)and It showed maximal extension angles by phase 2($102.48{\pm}10.00,\;102.39{\pm}10.51$deg/sec). in part of phase 3, left of shoulder-joint angle($94.43{\pm}4.12$deg/sec) showed flexion phase 1, the other right shoulder-joint angle(88.38${\pm}$4.98deg/sec) showed more a little lower than phase 1, in last phase that showed most low by phase 4($70.58{\pm}13.72,\;54.24{\pm}11.58$deg/sec). 3. Each displacement left, right of hip joint showed maximal extent conditions by phase 2, 3($160.35{\pm}22.68,\;1534.77{\pm}5.40$deg/sec, $150.04{\pm}12.79,\;145.54{\pm}13.00$deg/sec) beside, ankle-joint showed minimal angle by phase 1, 4($93.59{\pm}18.92,\;85.37{\pm}13.23$deg/sec, $66.60{\pm}15.77,\;80.60{\pm}16.57$deg/sec). 4. Each displacement left, right of hip joint showed maximal extent conditions by phase 2($157.15{\pm}9.13,\;163.52{\pm}8.18$deg/sec), and right of hip joint showed minimal angle by phase 3($110.87{\pm}13.81,\;77.53{\pm}8.95$deg/sec) It showed alike condition of low angle by phase 1, 4($91.04{\pm}2.31,\;96.26{\pm}2.20$deg/sec). 5. Each displacement left, right of knee-joint showed maximal extent conditions by phase 1, 3, 4($173.46{\pm}2.95,\;171.51{\pm}5.44$deg/sec, $172.24{\pm}4.49,\;171.26{\pm}0.65$deg/sec, $162.78{\pm}2.13,\;164.10{\pm}5.97$deg/sec) but It showed flexion only left of knee-joint by phase 2($164.45{\pm}7.51,\;159.38{\pm}3.48$deg/sec). 6. Each speed left, right of the tip of the toes showed most fastest when someone jumped with lift up leges by phase 1, 2($321.32{\pm}67.91,\;316.90{\pm}41.97$cm/sec, $410.06{\pm}153.06,\;399.77{\pm}189.34$cm/sec), It showed more less speed than phase 1,2 by phase 3($169.74{\pm}67.17,\;150.00{\pm}63.80$cm/sec) and It showed most slow speed than phase 1,2,3 by phase 4($87.22{\pm}34.90,\;85.72{\pm}52.23$cm/sec).

Effect of Kinesiotaping on The Ankle Proprioception in Normal Subjects (일반인의 발목관절에 키네시오 테이핑 적용이 고유감각에 미치는 영향)

  • Lee, Suk-Ju;Lee, Sin-Young;Lee, Da-Seul;Oh, Joo-Young;Kim, Jang-Gon
    • Journal of Korean Physical Therapy Science
    • /
    • v.23 no.1
    • /
    • pp.18-23
    • /
    • 2016
  • Purpose : The purpose of the present study is to report the effect of proprioception of ankle after kinesiotaping application on ankle. Method : This study has conducted to target 30 average adult subjects with no damage to the ankle joint (16 males and 14 females). The group is divided into experimental group and sham groups in random way. The subjects in the experimental group are applied taping kinesiology on ankle joint. The subjects in the sham group are applied a sham taping on the ankle joint which is not actually affected for real ankle joint problem. Each subjects in both groups has tree trials in plantarflexion, dorsiflexion, inversion, and eversion before and after application of the kinesiotaping or sham taping of the bare footed ankle. The outcome were determined from the difference between the target angle and the trial angle produced by the subject. Results : These results from the experiment shows that the experimental group compared to the difference in kinesiotaping angle values were significantly different from each dorsiflexion (DF), eversion (EV) (p<.05). Otherwise, in the sham group did not produce significant differences in any joint movement. In addition, when we compared between two groups (the experimental and sham groups), it did not show that there was significant differences. Conclusion : First, there is no significant difference between the sham group and kinesiotaping group after proprioceptive tests. Second, even though there is no significant outcome in statistical analysis, there is actual differences in the experiment. This result might be ceiling effect, and if the kinesiotaping were applied to actual ankle injury patients, this taping treatment could be very effective for curing this patient.

  • PDF

Effect of Joint Cohesive Strength on the Earth Pressure against the Support System in a Jointed Rock Mass (절리형성 암반지층 굴착벽체 작용토압에 대한 절리 점착강도의 영향)

  • Son, Moorak;Solomon, Adedokun
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.7
    • /
    • pp.41-53
    • /
    • 2014
  • This study examined the magnitude and distribution of the earth pressure on the support system in a jointed rock mass by considering different joint shear strength, rock type, and joint inclination angle. The study particularly focused on the effect of joint cohesive strength for a certain condition. Based on a physical model test (Son and Park, 2014), extended parametric studies were conducted considering rock-structure interactions based on the discrete element method, which can consider the rock and joint characteristics of rock mass. The results showed the earth pressure was strongly affected by the joint cohesive strength as well as the rock type and joint inclination angle. The study indicated that the effect of joint cohesive strength was particularly significant when a rock mass was under the condition of joint sliding. This paper investigates the magnitude of joint cohesive strength to prevent a joint sliding for each different condition. The test results were also compared with Peck's earth pressure, which has been frequently used for soil ground. The comparison indicated that the earth pressure in a jointed rock mass can be significantly different from that in soil ground. This study is expected to provide a better understanding of the earth pressure on the support system in a jointed rock mass.

A Comparative Study of Characters of Muscle Activity in Lower Limb and Gait Pattern on Type of Heel Rockers (신발 아웃솔의 굴곡 형태에 따른 하지근육활동의 특성과 보행 패턴의 비교연구)

  • An, Song-Y;Kim, Sang-Bum;Lee, Ki-Kwang
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.1
    • /
    • pp.111-119
    • /
    • 2007
  • The purpose of this study was to investigate muscle activity and gait pattern in lower limb depending on the outsole of heel rockers. Fifteen healthy men volunteered for this experiment. Each subject performed totally three trails with two pairs of different heel rocker shoes and a pair of normal running shoes at speed of 1.33m/s for 1 minute during walking on a treadmill. Kinematic data gathered in 100Hz was recorded and analyzed by using the 3D motion capture system to measure the trunk tilt and joint angle of the right lower limb. And the lower extremity muscle activities were simultaneously recorded in 1000Hz and assessed by using EMG. The statistical analysis was the one-way ANOVA with the repeated measures to compare among the three kinds of shoes. The level of statistical significance for all tests was 0.05. Joint angle of lower limb was showed statistically significant different in MST(hip joint), LHS(ankle joint), and RTO(knee and ankle joint). Muscle activity of rectus femoris and biceps femoris was statistically increased in both heel rocker shoes during gait cycle on treadmill. The maximum peak time of tibialis anterior in the negative heel rocker showed the delay of approximately 23.8%time than normal shoes. Gait pattern variability of the negative heel rocker was increased in the first half of the stance phase and the variability of the positive heel rocker was increased in the terminal stance phase. In Conclusion, stability was decreased in between joints of lower limb on positive heel rocker than negative heel rocker. This study found that there were different joint angle, muscle activity, gait pattern and coordinate system of the lower limb in each kind of shoes. These unstability affected the lower extremity and the whole body. A further study has to be continued with study of rehabilitation and exercise for a long-term.

Study on the Estimation Model of Shear Strength at Rock Joint and Its Influence Factor (암석절리면 전단강도 예측모델 및 영향요소에 관한 연구)

  • Son, Moorak
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.5
    • /
    • pp.5-12
    • /
    • 2023
  • This study investigates the existing models for estimating the shear strength of rock joints, presents related problems, and introduces a newly proposed model to overcome the problems. The results of many experimental tests show that the shear strength of a rock joint depends on many complex factors, including asperity angle, compressive strength, applied normal stress, friction angle, asperity cohesive strength, and progressive damage of asperities. However, the existing models do not account for these factors enough. To overcome these problems, Son (2020) developed a new model to estimate the shear strength of rock joints and confirmed its reliability by comparing with experimental results and existing models. In this paper, the developed model was used to investigate the various factors that affect the joint shear strength, and the results were compared and analyzed. Through this study, the factors that affect the shear strength of the rock joint could be identified in more detail.

Image Analysis of Angle Changes in the Forearm during Elbow Joint Lateral General Radiography: Evaluation of Humerus Epicondyle and Elbow Joint (팔꿉관절 측방향 일반촬영에서 아래팔뼈 각도 변화에 따른 영상 분석 : 위팔뼈 위관절융기와 팔꿉관절 평가)

  • Hyo-Soo Shin;Hye-Won Jang;Jong-Bae Park;Ki Baek Lee
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.4
    • /
    • pp.607-614
    • /
    • 2023
  • Clear overlapping of the bilateral epicondyle and proper separation of the elbow joint are crucial for obtaining accurate lateral general radiographs of the elbow. However, due to the complex anatomical structure of the elbow, achieving optimal positioning is challenging, leading to the need for repeated x-ray examinations. Therefore, the purpose of this study was to investigate the angle of the forearm in patients where accurate lateral images of the elbow joint can't be obtained after vertical incidence using a styrofoam device during elbow joint lateral x-ray imaging. Twenty patients were enrolled in our study following the established protocol. First, a vertical x-ray at an angle of 0° between the forearm and the table was taken (control group). Here, if the lateral image of the elbow joint was deemed inadequate, the forearm angle was adjusted using custom-made styrofoam supports with 5° and 10° inclinations (experimental groups). For the evaluation method, two assessors utilized a 5-point Likert scale to assess the images. The reliability of the assessments was analyzed using Cronbach's alpha coefficient. As a result, patients with inadequate overlap of the bilateral epicondyle and separation of the elbow joint in the initial examination (control group) were able to obtain the best images when setting a 10° angle between the forearm and the table. The subjective evaluation was 1.6 ± 0.8 points at 0°, 2.7 ± 0.8 points at 5°, and 4.4 ± 1.3 points at 10°, respectively. The reliability analysis for the angles of 0°, 5°, and 10° yielded Cronbach's alpha values of 0.867, 0.697, and 0.922, respectively. In conclusion, when it is not possible to obtain accurate images using the conventional position and X-ray beam direction, it is considered that by initially acquiring images with an angle of 10° between the forearm and the table, and gradually decreasing the angle while obtaining images, it would be possible to achieve the optimal image while reducing the number of repeat examinations.