• 제목/요약/키워드: the high higher surface

검색결과 2,944건 처리시간 0.037초

Al 합금의 고속가공에서 치수오차와 표면정도 추이고찰 (A Study on Transition of Dimension Error and Surface Precision in High Speed Machining of Al-alloy)

  • 정문섭
    • 한국생산제조학회지
    • /
    • 제9권3호
    • /
    • pp.96-102
    • /
    • 2000
  • High speed machining aims to raise the productivity and efficiency by making more precise and higher value-added products than any other machining method by means of the high speediness of spindle and feed drive system. The purpose of this study is to investigate the effects of the run-out of endmill on the dimension precision of workpiece and to obtain the fundamental data on high speed machining which is available by machining the side of Al-alloy with solid carbide endmills in high speed machining center and by measuring dimensions and surface roughness. From the results of experimentation following are obtained ; if spindle speed is ultra high in conditions that radial depth of cut and feed per tooth are very small highly precise and accurate products are to be made efficiently with high feed rate. and so we can raise productivity.

  • PDF

개량형 Durometer를 이용한 고강도 콘크리트의 응결시간 추정 가능성 분석 (A Study on the Estimation of Setting Time for High Strength Concrete Using Durometer)

  • 신세준;한수환;현승용;김종;한민철;한천구
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2020년도 가을 학술논문 발표대회
    • /
    • pp.87-88
    • /
    • 2020
  • The purpose of this study is to explore the possibility of estimating optimum surface finish time of the fresh concrete placed at the job site by applying a surface hardness test meter(Durometer). Tests are carried out by measuring and comparing the Penetration resistance test and hardness test by Durometer. Penetration resistance tester and improved Durometer are similar, but the higher the temperature, the higher the setting time, and the higher the correlation was shown. When the hardness value of the improved Durometer is about 50 HD, it is found that the initial and 80 HD represent the end. It is expected that this will be useful in determining the finish time of the surface at the actual site.

  • PDF

고주파 유도가열을 적용한 사출성형품의 웰드라인 개선 (Improvement of Weldlines of an Injection Molded Part with the Aid of High-Frequency Induction Heating)

  • 서영수;손동휘;박근
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 추계학술대회 논문집
    • /
    • pp.437-440
    • /
    • 2009
  • High-frequency induction is an efficient way to heat mold surface by electromagnetic induction in a non-contact manner. Thanks to its capability of rapid heating and cooling of mold surface, it has been recently applied to the injection molding. The present study applies the high-frequency induction heating for elimination of weldlines in an injection-molded plastic part. To eliminate weldlines, the mold temperature of the corresponding weld locations should be maintained higher than the glass transition temperature of the resin material. Through experiments, the maximum temperature of $143^{\circ}C$ is obtained on the mold surface around the elliptic coil, while the temperature of the mold plate is lower than $60^{\circ}C$. An injection molding experiment is then performed with the aid of induction heating, and the effect of induction heating conditions on the surface appearance of the weldline is investigated.

  • PDF

열간압연용 고속도공구강롤의 열피로 및 마모특성 (Thermal Fatigue and Wear Properties of High Speed Steel Roll for Hot Strip Mill)

  • 류재화;박종일
    • 소성∙가공
    • /
    • 제6권2호
    • /
    • pp.95-101
    • /
    • 1997
  • The thermal fatigue and wear properties of high speed steel roll which was recently developed were investigated by observing microstructure, by measuring mechanical and physical properties, by conducting thermal fatigue testing, and by measuring the amount of wear in actual mill. High speed steel roll had better thermal fatigue testing, and by measuring the amount of wear in actual mill. High speed steel roll had better thermal fatigue life than high chromium iron roll, which was due to lower carbide content, higher strength, and higher thermal conductivity. The amount of wear of high speed steel roll was nearly the same as that of high chromium iron roll in the first finishing stand, which was due to the oxide formation on the roll surface. However, in the third finishing stand, the wear resistance of high speed steel roll was 2~3 times as good as that of high chromium iron roll because the former had higher hardness at high temperature.

  • PDF

Effect of N2/Ar flow rates on Si wafer surface roughness during high speed chemical dry thinning

  • Heo, W.;Lee, N.E.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2010년도 제39회 하계학술대회 초록집
    • /
    • pp.128-128
    • /
    • 2010
  • In this study, we investigated the evolution and reduction of the surface roughness during the high-speed chemical dry thinning process of Si wafers. The direct injection of NO gas into the reactor during the supply of F radicals from NF3 remote plasmas was very effective in increasing the Si thinning rate, due to the NO-induced enhancement of the surface reaction, but resulted in the significant roughening of the thinned Si surface. However, the direct addition of Ar and N2 gas, together with NO gas, decreased the root mean square (RMS) surface roughness of the thinned Si wafer significantly. The process regime for the increasing of the thinning rate and concomitant reduction of the surface roughness was extended at higher Ar gas flow rates. In this way, Si wafer thinning rate as high as $20\;{\mu}m/min$ and very smooth surface roughness was obtained and the mechanical damage of silicon wafer was effectively removed. We also measured die fracture strength of thinned Si wafer in order to understand the effect of chemical dry thinning on removal of mechanical damage generated during mechanical grinding. The die fracture strength of the thinned Si wafers was measured using 3-point bending test and compared. The results indicated that chemical dry thinning with reduced surface roughness and removal of mechanical damage increased the die fracture strength of the thinned Si wafer.

  • PDF

700 MPa급 고강도 및 내진 철근의 미세조직과 인장 특성 (Microstructure and Tensile Properties of 700 MPa-Grade High-Strength and Seismic Resistant Reinforced Steel Bars)

  • 홍태운;이상인;황병철
    • 한국재료학회지
    • /
    • 제28권7호
    • /
    • pp.391-397
    • /
    • 2018
  • This study deals with the microstructure and tensile properties of 700 MPa-grade high-strength and seismic reinforced steel bars. The high-strength reinforced steel bars (600 D13, 600 D16 and 700 D13 specimens) are fabricated by a TempCore process, while the seismic reinforced steel bar (600S D16 specimen) is fabricated by air cooling after hot rolling. For specimens fabricated by the TempCore process, the 600 D13 and 600 D16 specimens have a microstructure of tempered martensite in the surface region and ferrite-pearlite in the center region, while the 700 D13 specimen has a microstructure of tempered martensite in the surface region and bainite in the center region. Therefore, their hardness is the highest in the surface region and shows a tendency to decrease from the surface region to the center region because tempered martensite has a higher hardness than ferrite-pearlite or bainite. However, the hardness of the 600S D16 specimen, which is composed of fully ferrite-pearlite, increases from the surface region to the center region because the pearlite volume fraction increases from the surface region to the center region. On the other hand, the tensile test results indicate that only the 700 D13 specimen with a higher carbon content exhibits continuous yielding behavior due to the formation of bainite in the center region. The 600S D16 specimen has the highest tensile-to-yield ratio because the presence of ferrite-pearlite and precipitates caused by vanadium addition largely enhances work hardening.

V, Nb 첨가 고강도 대형 H 형강의 부위별 미세조직과 경도 분포 (Microstructures and Hardness Distributions of a Large-sized High Strength H-sectional Steel with Both V and Nb)

  • 하양수;정재길;이영국
    • 열처리공학회지
    • /
    • 제26권2호
    • /
    • pp.59-65
    • /
    • 2013
  • The microstructures and hardness distributions of a large-sized high strength H-sectional steel with both V and Nb were systematically examined. The outer surface of the flange part was composed of martensite and bainite due to faster cooling, and had a high hardness value of approximately 310 Hv. However, the amounts of ferrite and pearlite increased and the hardness decreased with increasing the distance from the outer surface at the flange part, except the inner surface. High hardness value of about 290 Hv was measured at the upper surface of the web part having martensite and bainite. The hardness drastically decreased with increasing the web thickness, and then greatly rose again at the lower surface due to bainite formation caused by fast air cooling. The hardness of the flange part was higher than that of the web part due to the larger amount of low-temperature transformed phases, except for the lower surface of the web part. Nb-rich precipitates of 30 to 50 nm and V-rich precipitates less than 20 nm were observed at both flange and web parts. However, the particle size was smaller at the flange part than the web part, resulting in the higher strength of the flange part.

고속가공을 위한 정면밀링커터 바디시스템 개발 (Development of Face Milling Cutter Body System for High Speed Machining)

  • 장성민;맹민재;조명우
    • 한국정밀공학회지
    • /
    • 제21권12호
    • /
    • pp.21-28
    • /
    • 2004
  • In modem manufacturing industries such as the airplane and automobile, aluminum alloys which are remarkable in durability have been utilized effectively. High-speed machining technology for surface roughness quality of workpiece has been applied in these fields. Higher cutting speed and feedrates lead to a reduction of machining time and increase of surface quality. Furthermore, the reduction of time required for polishing or lapping of machined surfaces improves the production rate. Traditional milling process for high speed cutting can be machined with end mill tool. However, such processes are generally cost-expensive and have low material removal rate. Thus, in this paper, face milling cutter which gives high MRR has developed face milling cutter body for the high speed machining of light alloy to overcome the problems. Also vibration experiment to detect natural frequency in free state and frequency characteristics during machining are performed to escape resonance.

MAO 공정 변수가 TiO2 산화피막의 구조 및 광촉매 특성에 미치는 영향 (Influence of MAO Conditions on TiO2 Microstructure and Its Photocatalytic Activity)

  • 김정곤;강인철
    • 한국분말재료학회지
    • /
    • 제19권3호
    • /
    • pp.196-203
    • /
    • 2012
  • $TiO_2$ was successfully formed on a Ti specimen by MAO (Micro-Arc-Oxidation) method treated in $Na_3PO_4$ electrolyte. This study deals with the influence of voltage and working time on the change of surface microstructure and phase composition. Voltage affected the forming rate of the oxidized layer and surface microstructure where, a low voltage led to a high surface roughness, more holes and a thin oxidized layer. On the other hand, a high voltage led to more dense surface structure, wider surface holes, a thick layer and fewer holes. Higher voltage increases photocatalytic activity because of better crystallization of the oxidized layer and good phase composition with anatase and rutile $TiO_2$, which is able to effectively separate excited electrons and holes at the surface.

혼 해석을 통한 초음파 폴리싱 시스템의 개발 및 연마특성 (The Polishing Characteristics and Development of Ultrasonic Polishing System through Horn Analysis)

  • 박병규;김성청;문홍현;이찬호;강연식
    • 한국공작기계학회논문집
    • /
    • 제13권3호
    • /
    • pp.53-60
    • /
    • 2004
  • We have developed and manufactured an experimental ultrasonic polishing machine with frequency of 20kHz at the power of vibration 1.7㎾ for effective ultrasonic polishing in processing of high hardness material. Design of the horn is performed by the FEM analysis. The following conclusions were empirically deduced through experimental results to clarify the major elements which affect the surface roughness during the ultrasonic process by following the experimental plans. The ultrasonic polishing machine has been developed in parts of structure part, ultrasonic generator, vibrator. We were able to process the high hardness material without difficulty as a result of ultrasonic polishing by utilizing the groove added step-type horn. Through analyzing by applying the experimental plans, the rotating speed of the horn was determined to be the major factor in influencing the surface roughness. In the case of ceramic, wafer, we were able to obtain good surface roughness when the feed rate and the ultrasonic output were higher. Because the load on slurry particle increases when the ultrasonic output is higher, the processed surface becomes worse in the case of optical glass.