• Title/Summary/Keyword: the field of radiation use

Search Result 339, Processing Time 0.024 seconds

Institutional Applications of Eclipse Scripting Programming Interface to Clinical Workflows in Radiation Oncology

  • Kim, Hojin;Kwak, Jungwon;Jeong, Chiyoung;Cho, Byungchul
    • Progress in Medical Physics
    • /
    • v.28 no.3
    • /
    • pp.122-128
    • /
    • 2017
  • Eclipse Scripting Application Programming Interface (ESAPI) was devised to enhance the efficiency in such treatment related workflows as contouring, treatment planning, plan quality measure, and data-mining by communicating with the treatment planning system (TPS). It is provided in the form of C# programming based toolbox, which could be modified to fit into the clinical applications. The Scripting program, however, does not offer all potential functionalities that the users intend to develop. The shortcomings can be overcome by combining the Scripting programming with user-executable program on Windows or Linux. The executed program has greater freedom in implementation, which could strengthen the ability and availability of the Scripting on the clinical applications. This work shows the use of the Scripting programming throughout the simple modification of the given toolbox. Besides, it presents the implementation of combining both Scripting and user-executed programming based on MATLAB, applied to automated dynamic MLC wedge and FIF treatment planning procedure for promoting the planning efficiency.

Concepts, Quantities, Units and Terminology for Non-ionizing Radiation (비이온화방사선에 대한 제반 개념 양, 단위 및 용어)

  • Lee, Soo-Yong
    • Journal of Radiation Protection and Research
    • /
    • v.20 no.3
    • /
    • pp.201-213
    • /
    • 1995
  • Protection against non-ionizing radiation(NIR) is the subject of an increasing interest but the use of very different concepts depending on the type of radiation or application, makes it rather difficult to compile studies and the data obtained in an uniformity in this field. The main object of the present paper is to summarizes and provide an inventory of concepts, quantities, units and terminology currently used for purposes of NIR protection. Furthermore a systematic classification and comparison of these quantities is given, and in particular the concepts used to quantify exposure limitation and radiation protection standards are summarized and discussed.

  • PDF

Actual Use of Internet in Curriculum Study of Students in Radiology (방사선 재학생 전공교과목 학습에서 인터넷 활용 실태)

  • Kim, Min-Cheol;Huang, Yuxin;Choi, Ji Hoon;Jung, Hong Ryang;Park, Hae-Ri;Yang, Oh-Nam
    • Journal of radiological science and technology
    • /
    • v.41 no.5
    • /
    • pp.487-491
    • /
    • 2018
  • The purpose of this study was to analyze questionnaires of 161 college students attending radiology departments in order to investigate the actual condition of internet use of radiology students. As a result, 95% of college students using the Internet showed 5.8% of general knowledge, 56.9% of radiation major, and 45.8% of general education. In the field of Internet use, basic medicine was 71.2%, anatomy 59.5% and physiology 51.6%. Radiation theory was 39.9% in radiation physics, 31.4% in radiation biology, and 18.3% in radiation management. The radiological applications were followed by radiography and radiography in order of 31.4% and 20.3%, respectively. The radiological imaging was 45.8%, MRI was 37.9%, CT was 37.3%, ultrasound was 24.2%, And radiation nuclear medicine 25.5%. The results of the descriptive statistics of the satisfaction of the contents using the Internet media showed that the overall satisfaction was below 2.5 Based on the results of this study, it is necessary to develop a program with high accessibility to provide various opportunities for internet-based opportunities to increase the academic achievement value of major subjects through the internet and to solve the difficulties in the major subject.

Design and Application of Acrylic Electron Wedge to Improve Dose Inhomogeneities at the Junction of Electron Fields (전자선 조사야 결합부분의 선량분포 개선을 위한 Acrylic Electron Wedge의 제작 및 사용)

  • Kim Young Bum;Kwon Young Ho;Whang Woong Ku;Kim You Hyun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.10 no.1
    • /
    • pp.60-68
    • /
    • 1998
  • Treatment of a large diseased area with electron often requires the use of two or more adjoining fields. In such cases, not only electron beam divergence and lateral scattering but also fields overlapping and separation may lead to significant dose inhomogeneities(${\pm}20\%$) at the field junction area. In this study, we made Acrylic Electron Wedges to improve dose homogeneities(${\pm}5\%$) in these junction areas and considered application it to clinical practices. All measurements were made using 6, 9, 12, 16, 20MeV Electron beams from a linear accelerator for a $10{\times}10cm$ field at 100cm SSD. Adding a 1 mm sheet of acryl gradually from 1 mm to 15 mm, We acquired central axis depth dose beam profile and isodose curves in water phantom. As a result, for all energies, the practical range was reduced by approximately the same distance as the thickness of the acryl insert, e.g. a 1 mm thick acryl insert reduce the practical range by approximately 1 mm. For every mm thickness of acryl inserted, the beam energy was reduced by approximately 0.2MeV. These effects were almost independent of beam energy and field size. The use of Acrylic Electron Wedges produced a small increase $(less\;than\;3\%)\;in\;the\;surface\;dose\;and\;a\;small\;Increase(less\;than\;1\%)$ in X-ray contamination. For acryl inserts, thickness of 3 mm or greater, the penumbra width increased nearly linear for all energies and isodose curves near the beam edge were nearly parallel with the incident beam direction, and penumbra width was $35\;mm{\sim}40\;mm$. We decide heel thickness and angle of the wedge at this point. These data provide the information necessary to design Acrylic Electron Wedge which can be use to improve dose uniformity at electron field junctions and it will be effectively applicated in clinical practices.

  • PDF

Mechanism of the X-ray and Soft Gamma-ray Emissions from the High Magnetic Field Pulsar: PSR B1509-58

  • Wang, Yu;Takata, Jumpei;Cheng, Kwong Sang
    • Journal of Astronomy and Space Sciences
    • /
    • v.30 no.2
    • /
    • pp.91-94
    • /
    • 2013
  • We use the outer gap model to explain the spectrum and the energy dependent light curves of the X-ray and soft ${\gamma}$-ray radiations of the spin-down powered pulsar PSR B1509-58. In the outer gap model, most pairs inside the gap are created around the null charge surface and the gap's electric field separates the opposite charges to move in opposite directions. Consequently, the region from the null charge surface to the light cylinder is dominated by the outflow current and that from the null charge surface to the star is dominated by the inflow current. We suggest that the viewing angle of PSR B1509-58 only receives the inflow radiation. The incoming curvature photons are converted to pairs by the strong magnetic field of the star. The X-rays and soft ${\gamma}$-rays of PSR B1509-58 result from the synchrotron radiation of these pairs. The magnetic pair creation requires a large pitch angle, which makes the pulse profile of the synchrotron radiation distinct from that of the curvature radiation. We carefully trace the pulse profiles of the synchrotron radiation with different pitch angles. We find that the differences between the light curves of different energy bands are due to the different pitch angles of the secondary pairs, and the second peak appearing at E > 10 MeV comes from the region near the star, where the stronger magnetic field allows the pair creation to happen with a smaller pitch angle.

The useage of the EPID as a QA tools (EPID의 적정관리 도구로서의 유용성에 관한 연구)

  • Cho Jung Hee;Bang Dong Wan;Yoon Seong Ik;Park Jae Il
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.11 no.1
    • /
    • pp.16-21
    • /
    • 1999
  • Purpose : The aim of this study is to conform the possibility of the liquid type EPID as a QC tools to clinical indication and of replacement of the film dosimetry. Aditional aim is to describe a procedure for the use of a EPID as a physics calibration tool in the measurements of radiation beam parameters which are typically carried out with film. Method & Materials : In this study we used the Clinac 2100c/d with EPID. This system contains 65536 liquid-filled ion chambers arranged in a $256{\times}256$ matrix and the imaging area is $32.5{\times}32.5cm$ with liquid layer thickness of 1mm. The EPID was tested for different field sizes under typical clinical conditions and pixel values were calibrated against dose by producing images using various thickness of lead attenuators(lead step wedge) using 6 & 10MV x-ray. We placed various thickness of lead on the table of linear accelerator and set the portal vision an SDD of 100cm. To acquire portal image we change the field size and energy, and we recorded the average pixel value in a $3{\times}3$ pixel region of interest(ROI) at field center was recorded. The pixel values were also measured for different field sizes in order to evaluate the dependence of pixel value on x-ray energy spectrum and various scatter components. Result : The EPID, as a whole, was useful as a QA tool and dosimetry device. In mechanical check, cross-hair centering was well matched and the error was less than ?2mm and light/radiation field coincidence was less than 1mm also. In portal dosimetry the wider the field size the the higher the pixel value and as the lead thickness increase, the pixel value was exponentially decreased. Conclusions : The EPID was very suitable for QA tools and it can be used to measure exit dose during patients treatment with reasonable accuracy. But when indicate the EPID to clincal study deep consideration required

  • PDF

CNT-BASED FIELD EMISSION X-RAY SOURCE

  • Kim, Hyun Suk;Lee, Choong Hun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.433-433
    • /
    • 2016
  • Carbon nanotubes (CNT) emitter has widely become an attractive mechanism that draws growing interests for cold cathode field emission. CNT yarns have demonstrated its potential as excellent field emitters. It was demonstrated that a small focal spot size was achieved by manipulating some electrical parameters, such as applied bias voltage at the mesh gate, and electrostatic focal lenses, geometrical parameters, such as axial distances of the anode, and the electrostatic focal lens from the cathode assembly, and the dimension of the opening of the electrostatic lens. Electrical-optics software was used to systematically investigate the behavior of the electron beam trajectory when the aforementioned variables were manipulated. The results of the experiment agree with the theoretical simulation results. Each variable has an individual effect on the electron beam focal spot size impinging on the target anode. An optimum condition of the parameters was obtained producing good quality of X-ray images. Also, MWCNT yarn was investigated for field emission characteristics and its contribution in the X-ray generation. The dry spinning method was used to fabricate MWCNT yarn from super MWCNTs, which was fabricated by MW-PECVD. The MWCNT yarn has a significant field emission capability in both diode and the triode X-ray generation structure compared to a MWCNT. The low-voltage-field emission of the MWCNT yarn can be attributed to the field enhancing effect of the yarn due to its shape and the contribution of the high-aspect-ratio nanotubes that protrude from the sides of the yarn. Observations of the use of filters on the development of X-ray images were also demonstrated. The amount of exposure time of the samples to the X-ray was also manipulated. The MWCNT yarn can be a good candidate for use in the low voltage field emission application of X-ray imaging.

  • PDF

Comparison of the Legislation Applicable to Compare the use of Diagnostic Radiation Devices (진단용 방사선발생장치 이용에 적용되는 법제의 비교)

  • Ko, Jong-Kyung;Jeon, Yeo-Ryeong;Han, Eun-Ok;Cho, Pyong-Kon;Kim, Yong-Min
    • Journal of radiological science and technology
    • /
    • v.38 no.3
    • /
    • pp.277-286
    • /
    • 2015
  • Diagnostic radiation devices that is used in the country has reached to 78,000 units. When used for human subjects diagnostic purposes, it is subject to Medical Service Act, when used in diagnostic purposes in animal subjects, the subject to Veterinarians Act. When used for other purposes are subject to the Nuclear Safety Act. Even the same radiation devices varies the legislation that is applied depending on the intended use and object. Diversified been p rovisions a re necessary compared to t he analysis o f l egal content in o rder t o prevent confusion of the legislation is a matter to be applied. It is a qualitative study that Nuclear Safety Act, Medical Service Act and Veterinarians Act administrative procedures for the introduction of the applied diagnostic radiation devices, safety inspection, human resources management, area management and the content related to administrative punishment. The Nuclear Safety Act sub-provisions, the introduction of diagnostic radiation generating devices, there are many complex and complete requirements administrative procedures on the concept of a permit. Inspection of safety associated with the use, would be subject to periodic inspection auditing characteristics over the entire field of radiation safety management. It must receive court regular education for the safety administrator and workers. Unlike the reference of the radiation dose rate to specify the radiation controlled area there is a measurement obligation of radiation dose rate. Unlike the reference of the radiation dose rate to specify the radiation controlled area there is a measurement obligation of radiation dose rate. Quantitative difference of administrative punishment that is imposed when legislation violation has reached up to 10 times, over the entire field, the largest burden of radiation safety management at the time of application of the Nuclear Safety Act sub provisions. And it is applied differently depending on the purpose and the imaging target using the same diagnostic radiation devices. Depending on the use mainly under the current legal system, radiation can be lacking in fairness of the contents of the legislation for safety management, there is a risk of confusion. Alternatives such as centralized and standardization of legislation by diagnostic radiation devices use is expected to be necessary.

Film Dosimetry for Intensity Modulated Radiation Therapy : Dosimetric Evaluation (필름을 사용한 세기변조치료법에 대한 선량측정)

  • Ju Sang Gyu;Yeo Inhwan Jason;Huh Seung Jae;Choi Byung Ki;Park Young Hwan;Ahn Yong Chan;Kim Dae Yong;Kong Young Kun
    • Radiation Oncology Journal
    • /
    • v.20 no.2
    • /
    • pp.172-178
    • /
    • 2002
  • Purpose : X-ray film over responds to low-energy photons in relative photon beam dosimetry because its sensor is based on silver bromide crystals, which are high-Z molecules. This over-response becomes a significant problem in clinical photon beam dosimetry particularly in regions outside the penumbra. In intensity modulated radiation therapy (IMRT), the radiation field is characterized by multiple small fields and their outside-penumbra regions. Therefore, in order to use film dosimetry for IMRT, the nature the source of the over-response in its radiation field need to be known. This study is aimed to verify and possibly improve film dosimetry for IMRT. Materials and Method : Modulated beams were constructed by a combination of five or seven different static radiation fields using 6 MeV X-rays. In order to verify film dosimetry, we used X-ray film and an ion chamber were used to measure the dose profiles at various depths in a phantom. In addition, in order to reduce the over-response, 0.01 inch thick lead filters were placed on both sides of the film. Results : The measured dose profiles showed a film over-response at the outside-penumbra and low dose regions. The error increased with depths and approached 15% at a maximum for the field size of $15{\times}15cm^2$ at 10 cm depth. The use of filters reduced the error to 3%, but caused an under-response of the dose in a perpendicular set-up. Conclusion : This study demonstrated that film dosimetry for IMRT involves sources of error due to its over-response to low-energy Photons. The use of filers can enhance the accuracy in film dosimetry for IMRT. In this regard, the use of optimal filter conditions is recommended.

SIMULATING NONTHERMAL RADIATION FROM CLUSTER RADIO GALAXIES

  • TREGILLIS I. L.;JONES T. W.;RYU DONGSU
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.5
    • /
    • pp.509-515
    • /
    • 2004
  • We present results from an extensive synthetic observation analysis of numerically-simulated radio galaxy (RG) jets. This analysis is based on the first three-dimensional simulations to treat cosmic ray acceleration and transport self-consistently within a magnetohydrodynamical calculation. We use standard observational techniques to calculate both minimum-energy and inverse-Compton field values for our simulated objects. The latter technique provides meaningful information about the field. Minimum-energy calculations retrieve reasonable field estimates in regions physically close to the minimum-energy partitioning, though the technique is highly susceptible to deviations from the underlying assumptions. We also study the reliability of published rotation measure analysis techniques. We find that gradient alignment statistics accurately reflect the physical situation, and can uncover otherwise hidden information about the source. Furthermore, correlations between rotation measure (RM) and position angle (PA) can be significant even when the RM is completely dominated by an external cluster medium.