• Title/Summary/Keyword: the expression of phosphorylated AKT

Search Result 52, Processing Time 0.032 seconds

Pristimerin, a Naturally Occurring Triterpenoid, Exerts Potent Anticancer Effect in Colon Cancer Cells

  • Seo, Hee Won;Park, Ju-Hyung;Lee, Ji Yeon;Park, Hyun-Ju;Kim, Jin-Kyung
    • Biomedical Science Letters
    • /
    • v.24 no.1
    • /
    • pp.15-22
    • /
    • 2018
  • Pristimerin is a triterpene compound isolated from plant extracts that reportedly possesses antitumor, antioxidant, and anti-inflammatory activities. The current study was designed to evaluate the antitumor effects of pristimerin on human colon cancer cells. Treatment of the human colon cancer cells, HCT116 and SW480, with pristimerin led to a dose-dependent decrease in cell proliferation. Flow cytometry experiments showed that pristimerin increased cell apoptotic rate and decreased the mitochondrial membrane potential in HCT116 and SW480 cells. Western blot assay showed that pristimerin induced increased cleavage of caspase-3, -7, -8, and poly ADP ribose polymerase. Treatment with pristimerin also caused a marked decrease in the expression of Bcl-2 and Bcl-xL. Additionally, the levels of phosphorylated AKT and forkhead box O3a (FOXO3a) were decreased in pristimerin-treated colon cancer cells. Taken together, our study illustrated that pristimerin promoted apoptosis via the AKT/FOXO3a signaling pathway in colon cancer cells, elucidating that it might be considered as a potential agent for colon cancer therapy.

Ameliorative Effect of Persicaria Poliata Etract through the Rgulation of AP-1, PI3K/Akt and MAPK Sgnaling Mlecules in UVB-Iradiated HaCaT Clls (HaCaT 세포에서 며느리 배꼽 추출물의 AP-1, PI3K/Akt 및 MAPK 활성 조절을 통한 광손상 억제 효과)

  • Hyun-Seo Yoon;Chung-Mu Park
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.12 no.1
    • /
    • pp.63-71
    • /
    • 2024
  • Purpose : Skin is the primary barrier to protect the body from various exogenous factors. Among them, UVB exposure can cause the induction of not only excessive inflammatory responses but also the degradation of extracellular matrix (ECM), including collagen and elastin. This study tried to investigate the ameliorative effect of Persicaria perfoliata ethanol extract (PPEE) on UVB-irradiated photodamage through the regulation of activator protein (AP)-1, phosphoinositide 3-kinase (PI3K)/Akt, and mitogen-activated protein kinase (MAPK) signaling molecules in HaCaT cells. Methods : The cytotoxicity of PPEE on HaCaT cells was evaluated by the WST-1 assay. The 80 mJ/cm2 of UVB (312 nm) was irradiated on HaCaT cells to induce the photodamage. Western blot analysis was conducted to investigate the protein expression levels of cyclooxygenase (COX)-2, matrix metalloproteinase (MMP)-9, and heme oxygenase (HO)-1 for ameliorative status by PPEE treatment in UVB-exposed HaCaT cells. In addition, the activated status of the inflammatory transcription factor, AP-1, as well as upstream signaling molecules, PI3K/Akt, and MAPK, were also evaluated by Western blot analysis. Results : Any cytotoxic effect was not induced at the concentration up to 200 ㎍/ml by PPEE treatment. Protein expression levels of COX-2 and MMP-9 were significantly down- and up-regulated by PPEE treatment. The inflammatory transcription factor AP-1, stimulated by UVB irradiation, was also significantly attenuated by PPEE treatment. The phosphorylated status of PI3K/Akt and MAPK were mitigated by PPEE treatment in UVB-exposed HaCaT cells. Moreover, PPEE treatment potently accelerated the expression of HO-1 and its transcription factor, nuclear factor-erythroid 2-related factor (Nrf)2, which is known for its anti-inflammatory activity. Conclusion : Consequently, PPEE treatment significantly regulated COX-2 and MMP-9 expressions in UVB-irradiated HaCaT cells. The inflammatory transcription factor AP-1, along with upstream signaling molecules PI3K/Akt and MAPKs, were also attenuated by PPEE treatment in UVB-exposed HaCaT cells. Additionally, PPEE treatment exaggerated HO-1 expression and Nrf2 activation, which might have contributed to the anti-inflammatory activity of PPEE. These results indicate that PPEE could be a candidate for attenuating UVB-induced photodamage in human skin.

Delphinidin inhibits cell proliferation and induces apoptosis in MDA-MB-231 human breast cancer cell lines (Delphinidin이 인체 유방암세포 MDA-MB-231의세포증식 억제와 세포사멸 유도에 미치는 영향)

  • Seo, Eun Young
    • Journal of Nutrition and Health
    • /
    • v.46 no.6
    • /
    • pp.503-510
    • /
    • 2013
  • Breast cancer is the most common malignancy in women, both in the developed and developing countries. Anthocyanins are natural coloring of a multitude of foods, such as berries, grapes or cherries. Glycosides of the aglycons delphinidin represent the most abundant anthocyanins in fruits. Delphinidin has recently been reported to inhibit the growth of human tumor cell line. Also, delphinidin is a powerful antioxidant that reportedly exerts beneficial effects in patients with advanced cancer by reducing the level of reactive oxygen species and increasing glutathion peroxidase activity. This study investigates the effects of delphinidin on protein ErbB2, ErbB3 and Akt expressions associated with cell proliferation and Bcl-2, Bax protein associated with cell apoptosis in MDA-MB-231 human breast cancer cell line. MDA-MB-231 cells were cultured with various concentrations (0, 5, 10, and $20{\mu}mol/L$) of delphinidin. Delphinidin inhibited breast cancer cell growth in a dose dependent manner (p < 0.05). ErbB2 and ErbB3 expressions were markdly lower $5{\mu}mol/L$ delphinidin (p < 0.05). In addition, total Akt and phosphorylated Akt levels were decreased dose-dependently in cells treated with delphinidin (p < 0.05). Futher, Bcl-2 levels were dose-dependently decreased and Bax expression was significantly increased in cells treated with delphinidin (p < 0.05). In conclusion, I have shown that delphinidin inhibits cell growth, proliferation and induces apoptosis in MDA-MB-231 human breast cancer cell lines.

Niclosamide Inhibits Aortic Valve Interstitial Cell Calcification by Interfering with the GSK-3β/β-Catenin Signaling Pathway

  • Radhika Adhikari;Saugat Shiwakoti;Eunmin Kim;Ik Jun Choi;Sin-Hee Park;Ju-Young Ko;Kiyuk Chang;Min-Ho Oak
    • Biomolecules & Therapeutics
    • /
    • v.31 no.5
    • /
    • pp.515-525
    • /
    • 2023
  • The most common heart valve disorder is calcific aortic valve stenosis (CAVS), which is characterized by a narrowing of the aortic valve. Treatment with the drug molecule, in addition to surgical and transcatheter valve replacement, is the primary focus of researchers in this field. The purpose of this study is to determine whether niclosamide can reduce calcification in aortic valve interstitial cells (VICs). To induce calcification, cells were treated with a pro-calcifying medium (PCM). Different concentrations of niclosamide were added to the PCM-treated cells, and the level of calcification, mRNA, and protein expression of calcification markers was measured. Niclosamide inhibited aortic valve calcification as observed from reduced alizarin red s staining in niclosamide treated VICs and also decreased the mRNA and protein expressions of calcification-specific markers: runt-related transcription factor 2 and osteopontin. Niclosamide also reduced the formation of reactive oxygen species, NADPH oxidase activity and the expression of Nox2 and p22phox. Furthermore, in calcified VICs, niclosamide inhibited the expression of β-catenin and phosphorylated glycogen synthase kinase (GSK-3β), as well as the phosphorylation of AKT and ERK. Taken together, our findings suggest that niclosamide may alleviate PCM-induced calcification, at least in part, by targeting oxidative stress mediated GSK-3β/β-catenin signaling pathway via inhibiting activation of AKT and ERK, and may be a potential treatment for CAVS.

Effects of Achyranthoside C Dimethyl Ester on Heme Oxygenase-1 Expression and NO Production (Heme Oxygenase-1 발현과 NO 생성에 미치는 Achyranthoside C Dimethyl Ester의 효과)

  • Bang, Soo Young;Song, Ji Su;Moon, Hyung-In;Kim, YoungHee
    • Journal of Life Science
    • /
    • v.25 no.9
    • /
    • pp.976-983
    • /
    • 2015
  • Achyranthoside C dimethyl ester (ACDE) is an oleanolic acid glycoside from Achyranthes japonica which has been used in traditional medicine for the treatment of edema and arthritis. In this study, we investigated the anti-inflammatory effects of ACDE in RAW264.7 macrophages. ACDE significantly induced heme oxygenase-1 (HO-1) gene expression in RAW264.7 cells, while ACDE improved LPS-induced toxicity of cells. And ACDE induced nuclear translocation of nuclear factor E2-related factor 2 (Nrf2), a transcription factor that regulates HO-1 expression. Further study demonstrated that ACDE-induced expression of HO-1 was inhibited by inhibitors of phosphatidylinositol 3-kinase (PI-3K) (LY294002), c-Jun kinase (JNK) (SP600125), extracellular signal regulated kinase (ERK) (PD98059) and p38 kinase (SB203580). Moreover, ACDE phosphorylated Akt, JNK, ERK, and p38 MAPK. In addition, ACDE inhibited LPS-induced NO secretion as well as inducible NO synthase (iNOS) expression in a dose-dependent manner. The inhibitory effects of ACDE on iNOS expression were abrogated by small interfering RNA (siRNA)-mediated knock-down of HO-1. Therefore, these results suggest that ACDE suppresses the production of pro-inflammatory mediator such as NO by inducing HO-1 expression via PI-3K/Akt/MAPK-Nrf2 signaling pathway. These findings could help us to understand the active principle included in the roots of A. japonica and the molecular mechanisms underlying anti-inflammatory action of ACDE.

The Effect of Exercise Intensity on Changes in Neuronal Nitric Oxide Synthase Expression in the Hippocampus and Cerebral Cortex of Obese Mice (고지방식이로 유도된 비만 마우스의 해마 및 대뇌피질에서 운동강도에 따른 nNOS 발현의 변화)

  • Baek, Kyung-Wan
    • Journal of Life Science
    • /
    • v.29 no.1
    • /
    • pp.18-28
    • /
    • 2019
  • Recent studies reported that obesity upregulated the expression of neuronal nitric oxide synthase (nNOS) and regulated particular behavior patterns in animal models. They also reported that ameliorated the increase in nNOS expression and decreased depression and anxiolytic effects. Thus, exercise seems to be an effective strategy for improving brain function by downregulating nNOS. However, the immune response differs greatly, depending on the exercise intensity. The aim of the present study was to investigate differences in brain nNOS expression in obese C57BL/6 mice that performed exercise of different intensities. Obesity was induced in 6-wks-old mice (n=35) by feeding a 60%-fat diet for 6-wks. A control (CON) group (n=14) was fed a normal diet. At the end of the induction 6-wks period of obesity, seven animals in the CON group and obesity-induced group were sacrificed to confirm obesity induction (preliminary experiments and confirmation of visceral fat accumulation). The remaining animals were then used in an 8-wks exercise intervention. Other than the CON (n=7), the obesity-induced animals were divided into the following groups: high-fat diet (HFD, n=7), HFD-low intensity (HFD-LI, n=7, 12 m/min for 75 min), HFD-moderate intensity (HFD-MI, n=7, 15 m/min for 60 min), and HFD-high intensity (HFD-HI, n=7, 18 m/min for 50 min). The exercise was performed on an animal treadmill. The expression of the nNOS protein in the hippocampus was significantly higher in the HFD group as compared with that in the CON group (p<0.01). However, there was no difference in the hippocampal expression of the nNOS protein in the other exercise groups as compared with that in the CON group. In contrast, nNOS expression in the HFD-HI group was significantly lower than that in the HFD-LI group (p<0.05). The expression of phosphorylated Akt (pAkt) was significantly higher in all the exercise groups as compared with that in the CON and HFD groups. There was no difference in the expression of pAkt in the cerebral cortex among groups, and the expression of pAkt in the cerebellum was significantly higher in the HFD-HI group as compared with that in the CON group (p<0.05). There were also no between-group differences in pAkt expression in the cerebellum among the various exercise groups. In conclusion, nNOS seems to be overexpressed in response to obesity, and it appears to be downregulated by exercise. Relatively high-intensity exercise may be effective in improving brain function by downregulating nNOS.

Celastrol inhibits gastric cancer growth by induction of apoptosis and autophagy

  • Lee, Hyun-Woo;Jang, Kenny Seung Bin;Choi, Hye Ji;Jo, Ara;Cheong, Jae-Ho;Chun, Kyung-Hee
    • BMB Reports
    • /
    • v.47 no.12
    • /
    • pp.697-702
    • /
    • 2014
  • Recently, the interest in natural products for the treatment of cancer is increasing because they are the pre-screened candidates. In the present study, we demonstrate the therapeutic effect of celastrol, a triterpene extracted from the root bark of Chinese medicine on gastric cancer. The proliferation of AGS and YCC-2 cells were most sensitively decreased in six kinds of gastric cancer cell lines after the treatment with celastrol. Celastrol inhibited the cell migration and increased G1 arrest in cell-cycle populations in both cell lines. The treatment with celastrol significantly induced autophagy and apoptosis and increased the expression of autophagy and apoptosis-related proteins. We also found an increase in phosphorylated AMPK following a decrease in all phosphorylated forms of AKT, mTOR and S6K after the treatment with celastrol. Moreover, gastric tumor burdens were reduced in a dose-dependent manner by celastrol administration in a xenografted mice model. Taken together, celastrol distinctly inhibits the gastric cancer cell proliferation and induces autophagy and apoptosis.

Apoptosis and Autophagy Induced by Methanol Extract of Kochia scoparia in Human Mucoepidermoid Carcinoma Cell Line (점액표피양암종 세포주에서 Kochia scoparia 추출물의 세포자멸과 자가포식 유도 효과)

  • Do, Mihyang;Ryu, Mi Heon;Kim, Uk-Kyu
    • The Korean Journal of Oral and Maxillofacial Pathology
    • /
    • v.42 no.6
    • /
    • pp.167-174
    • /
    • 2018
  • Natural products are vastly utilized as a source of chemotherapeutic agents for human cancers. Kochia scopraia is traditionally used for the cure of urological and dermatological diseases. Recently, methanol extract of Kochia scoparia (MEKS) has been shown to have anti-cancer activity to various human cancers. However, there is no report demonstrating the anti-cancer activity of MEKS in human mucoepidermoid carcinoma (MEC) cells. In this study, the authors studied the effects of MEKS on the cell proliferation and underlying mechanism in YD15 human MEC cells. MEKS decreased YD15 cell proliferation proven by trypan blue exclusion assay and induced apoptosis, evidenced by cell cycle analysis and western blotting. Autophagy induction by MEKS was verified by western blotting. In addition, MEKS regulated the expression of phosphorylated Akt, phosphorylated p38 and Nrf2 protein. This results can imply that MEKS might be a potential candidate for the treatment of human MEC cells.

Elevated Prx1 Provides Resistance to Docetaxel, But Is Not Associated with Predictive Significance in Lung Cancer

  • Hwang, Ki Eun;Park, Chul;Seol, Chang Hwan;Hwang, Yu Ri;Hwang, June Seong;Jung, Jae Wan;Choi, Keum Ha;Jeong, Eun Taik;Kim, Hak Ryul
    • Tuberculosis and Respiratory Diseases
    • /
    • v.75 no.2
    • /
    • pp.59-66
    • /
    • 2013
  • Background: This study was conducted in order to elucidate the effects of docetaxel on the growth of peroxiredoxin 1 (Prx1) knockdown A549 xenograft tumors and further tested the role of Prx1 as a predictor for how a patient would respond to docetaxel treatment. Methods: Effects of docetaxel on the growth of scrambled- and shPrx1-infected A549 xenograft tumors in nude mice were measured. Moreover, immunohistochemical expression of Prx1 was evaluated in paraffin-embedded tissues from 24 non-small cell lung cancer patients who had received docetaxel-cisplatin regimens as a first-line treatment. Results: Docetaxel treatment in Prx1 knockdown xenograft tumor resulted in reduced tumors growth compared with other groups. Prx1 knockdown increased the production of cleaved caspases-8 and -9 in the control itself compared to scramble tumors. Moreover, docetaxel treatment in Prx1 knockdown tissue led to an increased protein band. Phosphorylated Akt was found in Prx1 scramble tissues. Phosphorylated FOXO1 was detected in the docetaxel treatment group. On the other hand, Prx1 knockdown completely suppressed the Akt-FOXO1 axis. The median progression-free survival (PFS) of patients with low Prx1 expression was 7 months (95% confidence interval [CI], 6.0-7.7), whereas the median progression-free survival of patients with high Prx1 expression was 4 months (95% CI, 4.0-5.0). However, high Prx1 expression was not associated with decreased PFS (p=0.114). Conclusion: Our findings suggest that elevated Prx1 provides resistance to docetaxel treatment through suppression of FOXO1-induced apoptosis in A549 xenograft tumors, but may not be related with the predictive significance for response to docetaxel treatment.

Baicalein Inhibits the Migration and Invasion of B16F10 Mouse Melanoma Cells through Inactivation of the PI3K/Akt Signaling Pathway

  • Choi, Eun-Ok;Cho, Eun-Ju;Jeong, Jin-Woo;Park, Cheol;Hong, Su-Hyun;Hwang, Hye-Jin;Moon, Sung-Kwon;Son, Chang Gue;Kim, Wun-Jae;Choi, Yung Hyun
    • Biomolecules & Therapeutics
    • /
    • v.25 no.2
    • /
    • pp.213-221
    • /
    • 2017
  • Baicalein, a natural flavonoid obtained from the rhizome of Scutellaria baicalensis Georgi, has been reported to have anticancer activities in several human cancer cell lines. However, its antimetastatic effects and associated mechanisms in melanoma cells have not been extensively studied. The current study examined the effects of baicalein on cell motility and anti-invasive activity using mouse melanoma B16F10 cells. Within the noncytotoxic concentration range, baicalein significantly inhibited the cell motility and invasiveness of B16F10 cells in a concentration-dependent manner. Baicalein also reduced the activity and expression of matrix metalloproteinase (MMP)-2 and -9; however, the levels of tissue inhibitor of metalloproteinase-1 and -2 were concomitantly increased. The inhibitory effects of baicalein on cell motility and invasiveness were found to be associated with its tightening of tight junction (TJ), which was demonstrated by an increase in transepithelial electrical resistance and downregulation of the claudin family of proteins. Additionally, treatment with baicalein markedly reduced the expression levels of lipopolysaccharide-induced phosphorylated Akt and the invasive activity in B16F10 cells. Taken together, these results suggest that baicalein inhibits B16F10 melanoma cell migration and invasion by reducing the expression of MMPs and tightening TJ through the suppression of claudin expression, possibly in association with a suppression of the phosphoinositide 3-kinase/Akt signaling pathway.