• 제목/요약/키워드: the electron beam welding

검색결과 105건 처리시간 0.026초

UNDERLIGNING THERMOCAPILLARY EFFECTS BY ELECTRON BEAM MELTING OF THIN SPECIMENS

  • Domergue, L.;Camel, D.;Marya, S.
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2002년도 Proceedings of the International Welding/Joining Conference-Korea
    • /
    • pp.199-204
    • /
    • 2002
  • Extensive investigations on cast to cast variations observed in steels have underlined the role of thermocapillary or surface tension driven fluid flow in welding operations. The behavior of weld pool under the electric arc is however affected by possible arc modifications linked to microchemistry variations in materials & this limits to some extent the real contribution from surface tension effects. Thus, electron beam welding with high vacuum was used to investigate thermo-capillary effects on thin austenitic stainless steels & nickel based alloys. The weld pool was monitored by video observations to estimate the importance of fluid flow during the melting & solidification phase. The results underline the importance of fluid flow on [mal solidification.

  • PDF

이동 열원을 고려한 전자빔 용접의 유한요소해석 (Fininte element analysis of electron beam welding considering for moving heat source)

  • 조해용;정석영;김명한;조창용;이제훈;서정
    • 한국레이저가공학회지
    • /
    • 제4권1호
    • /
    • pp.21-28
    • /
    • 2001
  • Simulation on the electron beam welding of Al 2219 alloy was carried out by using commercial FEM code MARC, which encounters moving heat sources. Due to axisymmetry of geometry, a half of the cylinder was simulated. A coupled thermo-mechanical analysis was carried out and subroutine for heat flux was substituted in the program. The material properties such as specific heat, heat transfer coefficient and thermal expansion coefficient were given as a function of temperature and the latent heat associated with a given temperature range is considered. As a result, the proper beam power is 60㎸${\times}$60㎃ and welding speed is 1∼1.5 m/min. The residual stress in the heat-affected zone as well as the fusion zone does not increase. It is necessary to use jigs for preventing distortion of cylinder and improving weld quality.

  • PDF

용접방법에 의한 타이타늄 연결부의 기계적 성질에 관한 연구 (MECHANICAL PROPERTIES OF TITANIUM CONNECTORS TREATED BY VARIOUS WELDING TECHNIQUES)

  • 이수영;장익태;허성주;임순호
    • 대한치과보철학회지
    • /
    • 제37권5호
    • /
    • pp.545-566
    • /
    • 1999
  • The use of pure titanium and titanium alloys have been increased recently in fixed, removable prosthodontics and implant fields as a framework. But when they were used for superstructures of implant or metal framework of removable prosthesis, welding is necessary to reconnect the fracture site to control the casting distortions. To overcome the difficulties in soldering the titanium due to high oxidation property, much effort have been devoted. In this study, some of mechanical properties were compared between pure titanium and Ti-6Al-4V alloy by using after welding, electron beam welding technique and tungsten arc welding. Mechanical properties such as tensile strength, yield strength, elongation and microhardness were measured. And, in order to compare the effect of welding site and surrounding metal tissue according to the welding condition, SEM photographs were taken and element distribution was observed by Wave Dispersion Spectroscopy. Through analyses of the data, following results were obtained; 1. In items such as tensile strength, yield strength and elongation according to the welding techniques of pure titanium, only tungsten arc welded group showed significant lower value than other groups(P<0.05). 2. In items such as tensile strength and yield strength according to the welding techniques of Ti-6Al-4V alloy, control group and tungsten arc welded group showed significant difference among all the groups(P<0.05). 3. Ti-6Al-4V alloy exhibited significantly greater elongation than control group when the laser welding method and electron beam welding method were used, and elongation showed increasing tendency. 4. Pure titanium specimens exhibited increasing tendency of microhardness regardless of the weld-ing technique applied, and especially tungsten arc welded group demonstrated a great increase of microhardness than parent metal. 5. There was no hardness change in laser welded group and electron beam welded group of Ti-6Al-4V alloy, but in tungsten arc welded group, hardness changed greatly from parent metal to weld seam. 6. Through the metallographic examination and scanning electron microscopy, laser welding caused central fusion and recristallizations were formed and tungsten arc welding caused localized fusion to 0.3-0.7mm from the surface.

  • PDF

GRAIN SIZE AND TOUGHNESS OF TI-6AL-4V ELECTRON BEAM AND TIG WELD DEPOSITS

  • Kivineva, Esa;Hannerz, Niis-Erik
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2002년도 Proceedings of the International Welding/Joining Conference-Korea
    • /
    • pp.632-638
    • /
    • 2002
  • Electron beam (EB) and Gas tungsten arc (TIG) welds were performed on 12.7 mm thick Ti-6Al-4V plate (ASTM Titanium Grade 5). Charpy-V toughness and hardness, as well as, microstructure of the welds and penetration from the macrostructure were studied. It appears that by EB welding rather smaller $\beta$-grains than with TIG welding can be obtained. Next to the fusion line the $\beta$-grain size in the HAZ was 50 ${\mu}{\textrm}{m}$l while in the weld metal it was 150 ${\mu}{\textrm}{m}$. Charpy-V toughness of the EB weld metal was equal or even better to that of base metal, which shows that the $\alpha$-martensite per se is not particularly brittle if only the grain size is fine enough. This is similar to behavior of low carbon martensite in steel. The grain size was studied with light optical and scanning electron (SEM) microscopes. Thus for products, for products which can be manufactured automatically with very narrow fit, the EB welding of Ti-6Al-4V appears to yield satisfactory toughness without any complex post weld heat treatment. ill this study as in earlier studies the TIG welds gave lower toughness than that of the base material due to the higher heat input and slower cooling as compared to EB welding.

  • PDF

브라운관 전자총 부품의 펄스 Nd:YAG레이저 용접에 관한 연구 (I) - 빔의 출력특성과 광학변수 - (A Study on Pulsed Nd:YAG Laser Welding of Electron Gun in Braun Tubes (I) - Characteristics of Beam Output Energy and Optical Parameters -)

  • 김종도;하승협;조상명
    • Journal of Welding and Joining
    • /
    • 제20권4호
    • /
    • pp.525-534
    • /
    • 2002
  • During laser spot welding of the braun tube electron gun, phenomena such as serious spattering and oxidative reaction, etc. were occurred. The spatter occurred from weld pool affects the braun tube, namely it blocks up a very small hole on the shadow mask and causes short circuit between two roles of the electron gun. We guessed that high power density and oxidative reaction are main sources of these problems. So, we studied to prevent and to reduce spatter occurring in spot welding of the braun tube electron gun using pulsed Nd:YAG laser. The characteristics of laser output power was estimated, and the loss of laser energy by optical parameter and spatter was measured by powermeter. The effects of welding parameters, laser defocused distance and incident angle, were investigated on the shape and penetration depth of the laser welded bead in flare and flange joints. From these results, the laser peak power was a major factor to control penetration depth and to occur spatter. It was found that the losses of laser energy by optic parameter and sticked spatter affect seriously laser weldability of thin sheets. The deepest penetration depth is gotten on focal position, and a "bead transition" occurred with a slight displacement of focal position relative to the workpiece surface and the absorption rate of the laser energy is affected by the shape factor of the workpiece. When we changed the incident angle of laser beam, the penetration depth was decreased a little with increasing of the incident angle, and the bead width was increased. The spattering was prevented by considering laser beam energy and incident angle.ent angle.

아연도금강판에 대한 중첩펄스 MIG 용접에서의 파형제어와 기공 발생 특성 (The Waveform Control and Blowhole Generation in the Wave Pulse MIG Welding for Galvanized Steel Sheets)

  • 조상명;김기정;이병우
    • Journal of Welding and Joining
    • /
    • 제23권1호
    • /
    • pp.69-76
    • /
    • 2005
  • Recently, application of arc welding to galvanized carbon steel sheet is on the increasing Ould in the fields of automobile and construction industries. In arc welding process, zinc is evaporated in weld pool, even under the appropriate welding condition and produce blowhole and/or pit. Zinc gas cause instability of arc and increase spatter and fume. This research is purposed to minimize the heat-input and the formation of porosities in the welded joint of the galvanized carbon steel sheet using variable polarity AC wave pulse MIG welding system. An appropriate welding condition which showed low spatter and good bead appearance was acquired by applying the AC pulse MIG welding machine to DC duplicated MIG welding with the solid wire. When oxygen gas was added to shield gas of MIG welding for galvanized steel sheet, arc length was increased and arc stability was improved. In the AC duplicated welding, the loss of galvanized layer was decreased as the amount of heat-input was decreased when the EN ratio was increased under the condition that average welding current was evenly set.