• Title/Summary/Keyword: the dynamics of image

Search Result 219, Processing Time 0.025 seconds

An MHD Simulation of the X2.2 Solar Flare on 2011 February 15

  • Inoue, Satoshi;Choe, Gwangson
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.1
    • /
    • pp.69.1-69.1
    • /
    • 2014
  • We perform an MHD simulation combined with observed vector field data to clarify an eruptive dynamics in the solar flare. We first extrapolate a 3D coronal magnetic field under a Nonlinear Force-Free Field (NLFFF) approximation based on the vector field, and then we perform an MHD simulation where the NLFFF prior to the flare is set as an initial condition. Vector field was obtained by the Soar Dynamics Observatory (SDO) at 00:00 UT on February 15, which is about 90 minutes before the X2.2-class flare. As a result, the MHD simulation successfully shows an eruption of strongly twisted lines whose values are over one-turn twist, which are produced through the tether-cut magnetic reconnection in strongly twisted lines of the NLFFF. Eventually, we found that they exceed a critical height at which the flux tube becomes unstable to the torus instability determining the condition that whether a flux tube might escape from the overlying field lines or not. In addition to these, we found that the distribution of the observed two-ribbon flares is similar to the spatial variance of the footpoints caused by the reconnection of the twisted lines being resided above the polarity inversion line. Furthermore, because the post flare loops obtained from MHD simulation well capture that in EUV image taken by SDO, these results support the reliability of our simulation.

  • PDF

Theoretical prediction on thickness distribution of cement paste among neighboring aggregates in concrete

  • Chen, Huisu;Sluys, Lambertus Johannes;Stroeven, Piet;Sun, Wei
    • Computers and Concrete
    • /
    • v.8 no.2
    • /
    • pp.163-176
    • /
    • 2011
  • By virtue of chord-length density function from the field of statistical physics, this paper introduced a quantitative approach to estimate the distribution of cement paste thickness between aggregates in concrete. Dynamics mixing method based on molecular dynamics was employed to generate one model structure, then image analysis algorithm was used to obtain the distribution of thickness of cement paste in model structure for the purpose of verification. By comparison of probability density curves and cumulative probability curves of the cement paste thickness among neighboring aggregates, it is found that the theoretical results are consistent with the simulation. Furthermore, for the model mortar and concrete mixtures with practical volume fraction of Fuller-type aggregate, this analytical formula was employed to predict the influence of aggregate volume fraction and aggregate fineness. And evolution of its mean values were also investigated with the variation of volume fraction of aggregate as well as the fineness of aggregates in model mortars and concretes.

Backstepping-Based Control of a Strapdown Boatboard Camera Stabilizer

  • Setoodeh, Peyman;Khayatian, Alireza;Farjah, Ebrahim
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.1
    • /
    • pp.15-23
    • /
    • 2007
  • In surveillance, monitoring, and target tracking operations, high-resolution images should be obtained even if the target is in a far distance. Frequent movements of vehicles such as boats degrade the image quality of onboard camera systems. Therefore, stabilizer mechanisms are required to stabilize the line of sight of boatboard camera systems against boat movements. This paper addresses design and implementation of a strapdown boatboard camera stabilizer. A two degree of freedom(DOF)(pan/tilt) robot performs the stabilization task. The main problem is divided into two subproblems dealing with attitude estimation and attitude control. It is assumed that exact estimate of the boat movement is available from an attitude estimation system. Estimates obtained in this way are carefully transformed to robot coordinate frame to provide desired trajectories, which should be tracked by the robot to compensate for the boat movements. Such a practical robotic system includes actuators with fast dynamics(electrical dynamics) and has more degrees of freedom than control inputs. Backstepping method is employed to deal with this problem by extending the control effectiveness.

A Team-based Firefighter Training Simulator for Complex Buildings (대형 복합건물을 대상으로 하는 소방관 팀 훈련용 시뮬레이터 개발)

  • Lee, Jai-Kyung;Cha, Moo-Hyun;Choi, Byung-Il;Kim, Tae-Sung
    • Korean Journal of Computational Design and Engineering
    • /
    • v.16 no.5
    • /
    • pp.370-379
    • /
    • 2011
  • The increasing complexity of complex buildings, such as high-rise buildings and underground subway stations, presents new challenges to firefighters. In a fire in complex buildings, the importance of the collaboration between firefighters is clear. The increased demand on firefighter training for such environment is now evident. Due to cost, time, and safety issues, it is impossible to experience a real fire in such environments for training. In addition, the use of real fire for training does not enable repeatable training and the evaluation of the training is difficult. We developed a team-based firefighter training simulator for complex buildings using the virtual reality technology. It provides the training and evaluation of firefighting and mission-based team training. To model real fire phenomena in virtual space, a numerical analysis method based on fire dynamics is used. To achieve an immersive virtual environment, an augmented reality technique for the compensation of real world image and a haptic technique for heat experience are adopted. The developed training simulator can help the firefighter to respond to large and complex firefighting scenarios, while maintaining the safety of the trainees.

Exploring How Gamification Design Drives Customers' Co-Creation Behavior in Taiwan

  • CHEN, Tser-Yieth;HUANG, Yu-Chen;LI, Pei-Fang
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.9 no.4
    • /
    • pp.109-120
    • /
    • 2022
  • This study has incorporated the mechanics-dynamics-emotions (MDE) and two behavioral learning paths to investigate the customers' co-creation behavior in Taiwan. The intuitive path begins with a gamification design that reflects the customers' proactive and innovative behavior; the cognitive path begins with persuasion knowledge remarks based on rational and reactive reasoning. These two paths conclude what forms user co-creation. The study collects data of 505 active social media users in Taiwan and employs structural equation modeling. The empirical findings demonstrate persuasive knowledge and gamification design are significantly associated with self-reference, and in turn, positively associated with co-creation. It indicates that cognitive behavior plays the main role in forming co-creation. Participants are more drawn to co-creation behaviors by the marketing contents that prompt reactive behaviors than proactive ones. Therefore, marketing managers can use appropriate stimuli to enhance co-creation behavior. Companies can design activities related to users, and more accessible for reactive, instead of proactive behavior, i.e., asking for their initiatives. It also suggests that companies' marketing campaigns should involve key opinion leaders matching the product image and the target audience's preferences. The novelty of this study is to introduce a novel augmented MDE framework to extend the "dynamics" into the incubation and implementation stage.

Basic Research for Causal Analysis of a Low-rate of G-SEED Certified Apartment Buildings

  • Kim, JungHwa;Lee, Hyun-Soo;Park, Moonseo;Lee, Seulbi
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.728-729
    • /
    • 2015
  • As environmental issues have been increased globally, eco-friendliness in the construction area, which accounts for more than 30% of total GHG gas emission has being urged. In response, the Korean government has implemented G-SEED(Green Standard for Energy and Environmental Design) certification from 2002. However, total number of certified apartment buildings is only around 1% of total number of approved apartment buildings. As a basic research to find out reasons of low rate of the certification, this paper analyzes consumers' decision-making process in G-SEED certified apartment building market comparing to non G-SEED certified one and draw System Dynamics modeling based on causal relationship. As a result, consumers' demand for the certified one is increased by 'Perceived Relative Utility' which is resulted from comparison process with non-certified one. The 'Perceived Relative Utility' is ascended upward steadily by 'Relative Perceived Price' considered as relatively short-term effect and 'Favorable Image of Certified Housing' referred to long-term effect.

  • PDF

A Study on the Transition of Design of Korean Soccer Uniform -Based on national soccer players uniform- (한국 축구 유니폼 디자인 변천에 관한 연구 -국가대표 축구선수 유니폼을 중심으로-)

  • 조영아;손영미
    • Journal of the Korean Society of Costume
    • /
    • v.52 no.7
    • /
    • pp.103-121
    • /
    • 2002
  • This study intended to analyze the transition of design of Korean soccer player's uniform according to development of the society and changes in formative elements, and examine features inside them by considering designs of soccer player's uniform by ages ranging from the introduction of soccer up to now. Results of the study are summed up below. First, as a result of analyzing designs of soccer player's uniforms from 1920 to 2002 Korea-Japan WorldCup based on formative elements of the style of dress. \circled1 it is shown that basic shape has been kept but changes in only color. cutting, trimming, logo and symbol have existed. \circled2 Colors of the uniforms have been different according to ages but red, blue and white colors have been used most and sometimes black was employed. so it is known that colors in the Korean national emblem have been all used. \circled3 In the beginning of the uniform there was a limitation in its design due to absence of functional materials but now highly-sensitive textile products and highly-functional textile materials guaranteeing optimal condition and highest activity of a soccer player have been utilized in various ways. \circled4 It is known that symbols modelling the image of Korea have been used in diverse ways but effected much by directions toward images pursued by designers of sponsors. Second, the meanings represented by designs of the uniforms are classified into a degree of symbolizing Korea, tradition, superiority and dynamics. That is to say, \circled1as colors and symbols coming from the emblem have been used in the uniforms. they have symbolized one nation and possessed the meaning representing even Korean national spirit. \circled2As traditional colouring and symbols have been used in the uniforms, they have shown the Korean sense of a beauty. \circled3 Colors, tones and designs overwhelming the mood of play have been used in the uniforms, so that they have played a role in making players of other team flinch mentally and making Korean players gain an advantage over them. \circled4 Thanks to strong symbols or comparative effects of colors. they have shown the dynamics representing power and energy.

Flow Evaluation and Hemolysis Analysis of BVAD Centrifugal Blood Pump by Computational Fluids Dynamics

  • Bumrungpetch, Jeerasit;Tan, Andy Chit;Liu, Shu-Hong;Luo, Xian-Wu;Wu, Qing-Yu;Yuan, Jian-Ping;Zhang, Ming-Kui
    • International Journal of Fluid Machinery and Systems
    • /
    • v.7 no.1
    • /
    • pp.34-41
    • /
    • 2014
  • Computational fluid dynamics (CFD) and particle image velocimetry (PIV) are commonly used techniques to evaluate the flow characteristics in the development stage of blood pumps. CFD technique allows rapid change to pump parameters to optimize the pump performance without having to construct a costly prototype model. These techniques are used in the construction of a bi-ventricular assist device (BVAD) which combines the functions of LVAD and RVAD in a compact unit. The BVAD construction consists of two separate chambers with similar impellers, volutes, inlet and output sections. To achieve the required flow characteristics of an average flow rate of 5 l/min and different pressure heads (left - 100mmHg and right - 20mmHg), the impellers were set at different rotating speeds. From the CFD results, a six-blade impeller design was adopted for the development of the BVAD. It was also observed that the fluid can flow smoothly through the pump with minimum shear stress and area of stagnation which are related to haemolysis and thrombosis. Based on the compatible Reynolds number the flow through the model was calculated for the left and the right pumps. As it was not possible to have both the left and right chambers in the experimental model, the left and right pumps were tested separately.

Development of Agricultural Drought Assessment Approach Using SMAP Soil Moisture Footprints (SMAP 토양수분 이미지를 이용한 농업가뭄 평가 기법 개발)

  • Shin, Yongchul;Lee, Taehwa;Kim, Sangwoo;Lee, Hyun-Woo;Choi, Kyung-Sook;Kim, Jonggun;Lee, Giha
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.1
    • /
    • pp.57-70
    • /
    • 2017
  • In this study, we evaluated daily root zone soil moisture dynamics and agricultural drought using a near-surface soil moisture data assimilation scheme with Soil Moisture Active & Passive (SMAP, $3km{\times}3km$) soil moisture footprints under different hydro-climate conditions. Satellite-based LANDSAT and MODIS image footprints were converted to spatially-distributed soil moisture estimates based on the regression model, and the converted soil moisture distributions were used for assessing uncertainties and applicability of SMAP data at fields. In order to overcome drawbacks of the discontinuity of SMAP data at the spatio-temporal scales, the data assimilation was applied to SMAP for estimating daily soil moisture dynamics at the spatial domain. Then, daily soil moisture values were used to estimate weekly agricultural drought based on the Soil Moisture Deficit Index (SMDI). The Yongdam-dam and Soyan river-dam watersheds were selected for validating our proposed approach. As a results, the MODIS/SMAP soil moisture values were relatively overestimated compared to those of the TDR-based measurements and LANDSAT data. When we applied the data assimilation scheme to SMAP, uncertainties were highly reduced compared to the TDR measurements. The estimated daily root zone soil moisture dynamics and agricultural drought from SMAP showed the variability at the sptio-temporal scales indicating that soil moisture values are influenced by not only the precipitation, but also the land surface characteristics. These findings can be useful for establishing efficient water management plans in hydrology and agricultural drought.

EPAR V2.0: AUTOMATED MONITORING AND VISUALIZATION OF POTENTIAL AREAS FOR BUILDING RETROFIT USING THERMAL CAMERAS AND COMPUTATIONAL FLUID DYNAMICS (CFD) MODELS

  • Youngjib Ham;Mani Golparvar-Fard
    • International conference on construction engineering and project management
    • /
    • 2013.01a
    • /
    • pp.279-286
    • /
    • 2013
  • This paper introduces a new method for identification of building energy performance problems. The presented method is based on automated analysis and visualization of deviations between actual and expected energy performance of the building using EPAR (Energy Performance Augmented Reality) models. For generating EPAR models, during building inspections, energy auditors collect a large number of digital and thermal imagery using a consumer-level single thermal camera that has a built-in digital lens. Based on a pipeline of image-based 3D reconstruction algorithms built on GPU and multi-core CPU architecture, 3D geometrical and thermal point cloud models of the building under inspection are automatically generated and integrated. Then, the resulting actual 3D spatio-thermal model and the expected energy performance model simulated using computational fluid dynamics (CFD) analysis are superimposed within an augmented reality environment. Based on the resulting EPAR models which jointly visualize the actual and expected energy performance of the building under inspection, two new algorithms are introduced for quick and reliable identification of potential performance problems: 1) 3D thermal mesh modeling using k-d trees and nearest neighbor searching to automate calculation of temperature deviations; and 2) automated visualization of performance deviations using a metaphor based on traffic light colors. The proposed EPAR v2.0 modeling method is validated on several interior locations of a residential building and an instructional facility. Our empirical observations show that the automated energy performance analysis using EPAR models enables performance deviations to be rapidly and accurately identified. The visualization of performance deviations in 3D enables auditors to easily identify potential building performance problems. Rather than manually analyzing thermal imagery, auditors can focus on other important tasks such as evaluating possible remedial alternatives.

  • PDF