• Title/Summary/Keyword: the decreased size and volume

Search Result 479, Processing Time 0.027 seconds

Particle Size Control of Poly(Lactide-co-Glycolide) Microspheres for Oral Antigen Delivery Systems (경구용 항원 수송체 모델로서 폴리락티드-글리콜리드 마이크로스피어의 입자도 조절)

  • Song, Il-Yong;Song, Seo-Hyun;Song, Woo-Heon;Cho, Seong-Wan;Choi, Young-Wook
    • Journal of Pharmaceutical Investigation
    • /
    • v.29 no.4
    • /
    • pp.315-321
    • /
    • 1999
  • Poly (lactide-co-glycolide) (PLGA) microspheres containing ovalbumin (OVA) as a model protein drug were prepared by double emulsification method, and various conditions such as mixing rate, volume of outer phase and isopropyl alcohol concentration in outer phase during secondary emulsification were observed to control the size of microspheres. In addition, entrapment efficiency of OVA and protein denaturation were also evaluated. As the rate of stirring was increased, the size of particles was decreased. But excessive stirring increased the particle size of microspheres. In a preparation condition of small volume of outer phase, the particle size was decreased but the entrapment efficiency was increased. Adding isopropyl alcohol to outer phase decreased the size of particles, but increased the entrapment efficiency. Microparticles should have smaller size than $10\;{\mu}m$ to be uptaked by Peyer's patch in small intestine. High speed of mixing and relatively small volume of outer phase are needed to reduce the size. In addition, appropriate amount of isopropyl alcohol in outer phase also plays an important role in size reduction of PLGA microspheres.

  • PDF

Forward Converter Using 300W Planar Transformer (300W 평면 변압기적용 포워드 컨버터)

  • Choi, S.H;Park J.Y;Kim E.S
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.6
    • /
    • pp.560-567
    • /
    • 2004
  • In this paper, the design and implementation of a high power(300W) forward converter using a planar transformer is presented. The overall size and volume of the converter is decreased by replacing a planar transformer in stead of using a conventional winding transformer. Due to the decreased size and volume, power density of the applied forward converter is increased. Also, in this paper, the 300W ZVS forward converter with active clamp snubber circuit is compared to the 300W hard switching forward converter planar transformer, the decreased size and volume, the 300W ZVS forward converter with active clamp snubber circuit, 30W hard switching forward converter.

A Study on Transformation of The Breast Size, Shape and Volume Properties for Design of Maternity Brassiere (임산부용 브래지어 설계를 위한 유방부 변화에 대하여)

  • 정경화;최혜선
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.20 no.3
    • /
    • pp.438-451
    • /
    • 1996
  • This study was performed to provide basic data for design of maternity brassiere. In order to find out transformation of breast size, shape and volume properties during the period of pregnancy, direct measurements of 306 subjects using Martin's anthropometer and indirect measurements using photography were conducted. And also breast surface area, volume and assumed weight using the molding of adhisive sheet are calculated. The results are as follows; 1) Size (breast widths, depths, girths and lengths) of the breast of pregnant woman are gradually increased during pregnancy. But underbust girth is decreased after delivery. 2) Front view of the breast is gradully dropped and widened. 3) Surface area, volume were measured for each stage of pregnancy, and weights of breasts were estimated. The surface area of breast of latter stage of prgnancy was increased 1.7 times comparing with the early stage. 4) Changes of bust girth, breast depth, underbust girth, volume and estimated breast weight during pregnancy should be considered for cup size, cup shape, width and strain of strap, and width of the wings.

  • PDF

Effect of Slag Particle Size and Volume Fraction on Mechanical Properties of Slag Reinforced Composite (슬래그 입자의 크기 및 체적비에 따른 슬래그 입자강화 복합재료의 기계적 특성 연구)

  • Nam, Ji-Hoon;Chun, Heoung-Jae;Hong, Ik-Pyo
    • Composites Research
    • /
    • v.26 no.4
    • /
    • pp.218-222
    • /
    • 2013
  • This study demonstrated that a slag, an industrial solid waste, can be used as a structural reinforcement. The mechanical properties(tensile strength and Elastic modulus) of slag reinforced composite(SRC) was investigated as functions of slag particle size (8~12 ${\mu}m$ and 12~16 ${\mu}m$) and volume fraction (0-40 vol.%). In order to investigate the interface and a degree of particle dispersion which have an effect on mechanical properties, optical microscopic images were taken. The results of tensile tests showed that the tensile strength decreased with an increase in slag volume fraction and particle size. The elastic modulus increased with an increase in slag volume fraction and particle size except for 30 vol.% SRC. The tensile strength decreased with an increase in slag particle size. The microscopic picture showed SRC has fine degree of particle dispersion at low slag volume fraction. SRC has a good interface at every volume fraction. However particle cluster was incorporated with an increase in slag volume fraction.

Effect of Carbon on the Micro Structure and Hardness of Internally Hardened Ductile Cast Iron Roll (내부 경화형 구상흑연주철 롤 동체와 넥의 미세조직과 경도에 미치는 탄소 영향)

  • Sang-Mook Lee;Ki-Hang Shin;Byung-Chul Choi;Ki-Woo Nam
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.1
    • /
    • pp.79-86
    • /
    • 2023
  • This study was investigated the effect of carbon on the micro-structure and hardness of ductile cast iron roll with internal curing capacity. Spheroidal graphite existed at roll body with rapid cooling, but granular graphite existed at roll neck with slow cooling. The volume fraction of graphite increased at roll body with rapid cooling, That of roll neck with slow cooling decreased, but graphite size increased. The volume fraction of cementite decreased, but volume fraction increased. The cementite size was larger at roll neck than roll body. The hardness was decreased at roll body and roll neck due to volume fraction of cementite. The hardness of roll body was higher than roll neck.

Effect of Solution Heat Treatment on Mechanical Properties in Incoloy 825 Alloy (Incoloy 825 합금의 기계적 성질에 미치는 열처리의 영향)

  • Park, Y.T.;Kim, D.H.;Kang, C.Y.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.30 no.3
    • /
    • pp.99-105
    • /
    • 2017
  • This study was carried out to investigate the effect of heat treatment on the microstructure and mechanical properties in 90% hot forged Incoloy 825 alloy. With increasing solution treatment temperature, the grain size increased and the volume fraction of total precipitates decreased, and the precipitates disappeared at $1,000^{\circ}C$. With increasing aging time at $700^{\circ}C$, the volume fraction of precipitate increased and the precipitates size increased. Most of the precipitates consist $Cr_{23}C_6$ carbide, and a small amount of TiC carbide was also observed. With decreasing solution treatment temperature and increasing aging time, tensile strength and hardness increased, and the elongation and impact value decreased. With increasing aging time, the impact value decreased sharply by the increased of the precipitate size.

Effect of Concentration and Surface Property of Silica Sol on the Determination of Particle Size and Electrophoretic Mobility by Light Scattering Method (광산란법에서 실리카 졸의 농도 및 표면특성이 입자 크기 및 전기영동 이동도 측정결과에 미치는 영향)

  • Cho, Gyeong Sook;Lee, Dong-Hyun;Kim, Dae Sung;Lim, Hyung Mi;Kim, Chong Youp;Lee, Seung-Ho
    • Korean Chemical Engineering Research
    • /
    • v.51 no.5
    • /
    • pp.622-627
    • /
    • 2013
  • Colloidal silica is used in various industrial products such as chemical mechanical polishing slurry for planarization of silicon and sapphire wafer, organic-inorganic hybrid coatings, binder of investment casting, etc. An accurate determination of particle size and dispersion stability of silica sol is demanded because it has a strong influence on surface of wafer, film of coatings or bulks having mechanical, chemical and optical properties. The study herein is discussed on the effect of measurement results of average particle size, sol viscosity and electrophoretic mobility of particle according to the volume fraction of eight types of silica sol with different size and surface properties of silica particles which are presented by the manufacturer. The measured particle size and the mobility of these sol were changed by volume fraction or particle size due to highly active surface of silica particle and change of concentration of counter ion by dilution of silica sol. While in case the measured sizes of small particles less than 60 nm are increased with increasing volume fraction, the measured sizes of larger particles than 60 nm are slightly decreased. The mobility of small particle such as 12 nm are decreased with increase of viscosity. However, the mobility of 100 nm particles under 0.048 volume fraction are increased with increasing volume fraction and then decreased over higher volume fraction.

Specific Surface Area and Pore Structure Changes of Calcined Lime with Calcination and Sulfation Reaction (소성과 황화반응에 따른 생석회의 비표면적 및 기공구조 변화)

  • 강순국;정명규
    • Journal of environmental and Sanitary engineering
    • /
    • v.13 no.3
    • /
    • pp.19-29
    • /
    • 1998
  • The calcination reactivity of limestone and physical property changes of calcined lime were investigated with a temperature($720~1000^{\circ}C$ under atmospheric gas($N_2$, $CO_2$) conditions. The mechanisms of mass transport in a lime matrix were represented by the evaporation and condensation (${\gamma}=1.7$) at $1000^{\circ}C$ and the volume diffusion (${\gamma}=2.7$) at $800^{\circ}C$, which was obtained by the specific surface area of calcined lime with sintering conditions. Also, the effect of physical property on the reactivity of sulfation reaction was determined by the changes of pore size with $lime-SO_2$ reaction in this work. The initial sulfation rate of calcined lime increased with increasing temperature, whereas the capture capacity of $SO_2$ exhibited a maximum value at $900^{\circ}C$. The pore volume of sulfated lime was decreased with increasing sulfation time, but the major pores shifted to the distribution of larger size at a temperature of $850{\;}~{\;}1000^{\circ}C$. The mean pore size of sulfated lime based on pore volume decreased gradually at $1000^{\circ}C$; however, it increased with sulfation time up to 40 min and rapidly decreased thereafter.

  • PDF

Effects of Processing Parameters on the Mechanical Properties of Aluminium Matrix Composites (알루미늄 기지 금속복합재료의 기계적 성질에 미치는 제조변수의 영향)

  • Kim, J.D.;Koh, S.W.;Kim, H.J.
    • Journal of Power System Engineering
    • /
    • v.9 no.4
    • /
    • pp.130-136
    • /
    • 2005
  • The effects of additional Mg content, the size and volume fraction of reinforcement phase on the mechanical properties of ceramic particle reinforced aluminium matrix composites fabricated by pressureless metal infiltration process were investigated. The hardness of $SiC_p/AC8A$ composites increased gradually with an increase in the additive Mg content, while the bending strength of $SiC_p/AC8A$ composites increased with an increase in additive Mg content up to 5%. However, this decreased when the level of additive Mg content was greater than 5% due to the formation of coarse precipitates by excessive Mg reaction and an increase in the porosity level. The hardness and strength of the composites increased with decreasing the size of SiC particle. It was found that the composites with smaller particles enhanced the interfacial bonding than those with bigger particles from fractography of the composites. The hardness of $Al_2O_{3p}/AC8A$ composites increased gradually with an increase in the volume fraction, however, the bending strength of $Al_2O_{3p}/AC8A$ composites decreased when the volume fraction of alumina particle was greater than 40% owing to the high porosity level.

  • PDF

Effects of Volume Fraction & Particle Size of Alumina on Sintering Behaviors of the Glass-Alumina Composites for Low Firing Temperature (저온 소성용 유리-알루미나 복합체에서 알루미나의 부피분율과 입자크기에 따른 소결 거동)

  • 박덕훈;김봉철;김정주;박이순
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.7
    • /
    • pp.638-644
    • /
    • 2000
  • The sintering behaviors of the glass-alumina composites for low firing temperature were investigated as functiions of the volume fraction of alumina powder and the particle size with respect to porosity and pore shape. As the volume fraction of alumina powder was increased or the particle size of it was decreased, the sintering temperature of open pore-closing was raised. When the volume fractions of alumina which had 2.19$\mu\textrm{m}$ median diameter were increased with 20, 30, 40, and 50%, the sintering temperatures of open pore-closing were 425, 450, 475, and 500$^{\circ}C$. And when the median particle size of alumina was diminished from 2.19$\mu\textrm{m}$ to 0.38$\mu\textrm{m}$, the sintering temperature of open pore-closing was increased from 450$^{\circ}C$ to 475$^{\circ}C$. Especially, the sintering temperature, which showed maximum density, was corresponded with the stage of open pore-closing and after achieving maximum density over heating resulted in dedensification of specimen, so called, over-firing behavior.

  • PDF