• 제목/요약/키워드: the cooling technology

검색결과 2,637건 처리시간 0.027초

Improvement of Cooling Technology through Atmosphere Gas Management

  • Renard, Michel;Dosogne, Edgar;Crutzen, Jean-Pierre;Raick, Jean-Marc;Ma, Jia Ji;Lv, Jun;Ma, Bing Zhi
    • Corrosion Science and Technology
    • /
    • 제8권6호
    • /
    • pp.217-222
    • /
    • 2009
  • The production of advanced high strength steels requires the improvement of cooling technology. The use of high cooling rates allows relatively low levels of expensive alloying additions to ensure sufficient hardenability. In classical annealing and hot-dip galvanizing lines a mixing station is used to provide atmosphere gas containing 3-5% hydrogen and 97-95% nitrogen in the various sections of the furnace, including the rapid cooling section. Heat exchange enhancement in this cooling section can be insured by the increased hydrogen concentration. Drever International developed a patented improvement of cooling technology based on the following features: pure hydrogen gas is injected only in the rapid cooling section whereas the different sections of the furnace are supplied with pure nitrogen gas; the control of flows through atmosphere gas management allows to get high hydrogen concentration in cooling section and low hydrogen content in the other furnace zones. This cooling technology development insures higher cooling rates without additional expensive hydrogen gas consumption and without the use of complex sealing equipments between zones. In addition reduction in electrical energy consumption is obtained. This atmosphere control development can be combined with geometrical design improvements in order to get optimised cooling technology providing high cooling rates as well as reduced strip vibration amplitudes. Extensive validation of theoretical research has been conducted on industrial lines. New lines as well as existing lines, with limited modifications, can be equipped with this new development. Up to now this technology has successfully been implemented on 6 existing and 7 new lines in Europe and Asia.

직접식 금속 쾌속조형 공정을 이용한 고 냉각 특성 사출 성형 금형 개발에 관한 연구 (Investigation into Development of Injection Mould with High Cooling Characteristics Using Direct Metal RP Technology)

  • 안동규;김현우;김형수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 춘계학술대회 논문집
    • /
    • pp.187-190
    • /
    • 2007
  • The objective of this paper is to investigate into the development of injection mould with high cooling characteristics using a direct metal RP technology. In order to manufacture the injection mould with a high cooling rate, three-dimensional conformal cooling channels have been generated in the mould. DMT process, which is one of direct metal RP technologies, has been utilized to directly manufacture the metallic mould with three-dimensional conformal cooling channels. In order to examine the performance of the designed mould, injection molding tests have been carried out. The results of the experiments have been shown that a cooling time and the injection time of the proposed mould are reduced by the factor of five and two times in comparison with the injection mould with linear cooling channels.

  • PDF

상변화 냉각시스템의 정량적 성능지수 연구 (A Study on Quantitative Performance Index for Phase-Change Cooling Systems)

  • 장명언;송혜은
    • 한국군사과학기술학회지
    • /
    • 제23권3호
    • /
    • pp.237-245
    • /
    • 2020
  • In this paper, I introduce Phase-Change Cooling for thermal management of high power devices that can be applied to High Power Laser and Electric Propulsion Systems which are composed of multiple distributed superheat sources. Phase-Change Cooling can be good used to efficient cooling of their heat sources. Phase-Change Cooling has extremely high efficiency of two-phase heat transport by utilizing heat of vaporization, relatively low flow rates and reduced pumps power. And I suggest TPI(Thermal Performance Index) which is a quantitative performance index of Phase-Change Cooling for thermal management. I quantify the performance of Phase-Change Cooling by introducing TPI. I present the test results of TPI's changing refrigerant, heat sink and flow rate of the Phase-Change Cooling system through the experiments and analyze these results.

반도체 식각 공정용 냉각 시스템 구축을 위한 AMESim 모델 개발 (A Study on the Development of AMESim Model for Construction of Cooling System for Semiconductor Etching Process)

  • 김대현;김광선
    • 반도체디스플레이기술학회지
    • /
    • 제16권3호
    • /
    • pp.106-110
    • /
    • 2017
  • Due to the plasma applied from the outside, which acts as an etchant during the etching process, considerable heat is transferred to the wafer and a separate cooling process is performed to effectively remove the heat after the process. In this case, a direct cooling method using a refrigerant is suitable for cooling through effective heat exchange. The direct cooling method using the refrigerant using the latent heat exchange is superior to the cooling method using the sensible heat exchange. Therefore, in this paper, AMESim is used to design a direct refrigerant cooling system using latent heat exchange simulator was built.The constructed simulator is reliable compared with the actual experimental results. It is expected that this simulator will help to design and search for optimal process conditions.

  • PDF

냉각재킷의 설계인자에 따른 열전냉각장치의 성능에 관한 연구 (A Study on the Performance of Thermoelectric Cooling System for Design Parameters of the Cooling Jacket)

  • 박상희;이정은;김경진;김동주
    • 설비공학논문집
    • /
    • 제21권3호
    • /
    • pp.149-156
    • /
    • 2009
  • A small-scale thermoelectric cooling system was built in an effort to enhance the performance of the refrigeration system by utilizing the water-cooled jacket which was attached to the hot side of the thermoelectric module. Considered design parameters for the water-cooled jacket were the geometry of the flow passage inside the jacket and the flow rate of cooling water. The higher flow rate of cooling water in the jacket resulted in a better performance of the refrigeration system. The increase in the number of channels for water flow passage inside the cooling jacket also showed significant improvement on the performance of the thermoelectric cooling system such as the cooling capacity and the COP of the refrigeration system.

냉방부하 수요 창출을 통한 효율적 에너지 관리방안 연구 (A Study on the Cooling Load Generation for Efficient Energy Management)

  • 우남섭;김용기;이태원
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 하계학술발표대회 논문집
    • /
    • pp.1007-1012
    • /
    • 2008
  • Demand for the highly efficient and high performance urban energy supply system having been continuously increased according to the rise of quality of life and continuously increased energy cost all over the world. The district heating and cooling system is very effective way for energy saving, cost reduction, and demand side management of energy. There are several district cooling supply technologies such as chilled water direct transportation, installation of absorption type chiller in the user side, and desiccant cooling. This study investigates the advantage and technical problems of each district cooling technology. Also, it is necessary political and financial support system for the extension of district cooling system.

  • PDF

감압냉각장치를 이용한 다이캐스팅 금형의 냉각성능평가 (Evaluation of Diecasting Mold Cooling Ability by Decompression Cooling System)

  • 김억수;박주열;김용현;손기만;이광학
    • 한국주조공학회지
    • /
    • 제29권5호
    • /
    • pp.238-243
    • /
    • 2009
  • This study has been carried out to investigate the cooling ability improvement of diecasting mold by decompression cooling system. The decompression cooling system was applied to the new/used oil pump cover molds. The temperature of the surface mold applied the decompression cooling system fell to 15 degrees, especially in case of the used mold. The defect ratio of the oil pump cover manufactured by decompression cooling system has decreased from 2.8 percent to 0.2 percent. According to the results of the cooling ability improvement of diecasting mold by decompression cooling system, the decompression degree and supply pressure were set up the control item to apply the decompression cooling system to the diecasting mold in the industry field.

금형 냉각이 Al-Mn계 다중압출 평판관의 압출 특성 변화에 미치는 영향 (Effects of die cooling on change of extrusion characteristics of Al-Mn-based thin-walled flat multi-port tube)

  • 신영철;하성호;강태훈;이기안;이승철
    • Design & Manufacturing
    • /
    • 제17권4호
    • /
    • pp.63-71
    • /
    • 2023
  • In order to increase the extrusion production speed of aluminum, extrusion die cooling technology using liquid nitrogen has recently attracted a lot of attention. Increasing the extrusion speed increases the temperature of the bearing area of extrusion dies and the extrusion profile, which may cause defects on the surface of extruded profile. Extrusion die cooling technology is to directly inject liquid nitrogen through a cooling channel formed between the die and the backer inside the die-set. The liquid nitrogen removes heat from the die-set, and gaseous nitrogen at the exit of the channel, covers the extrusion profile of an inert atmosphere reducing the oxidation and the profile temperature. The aim of this study is to evaluate the cooling capacity by applying die cooling to extrusion of Al-Mn-based aluminum alloy flat tubes, and to investigate the effects of die cooling on the change in extrusion characteristics of flat tubes. Cooling capacity was confirmed by observing the temperature change of the extrusion profile depending on whether or not die cooling is applied. To observe changes in material characteristics due to die cooling, surface observation is conducted and microstructure and precipitate analysis are performed by FE-SEM on the surface and longitudinal cross section of the extruded flat tubes.

대면적 마그네트론 스퍼터링 증착장비의 수냉시스템 방열성능 해석 (Cooling Performance Analysis of Water-Cooled Large Area Magnetron Sputtering System)

  • 김경진
    • 반도체디스플레이기술학회지
    • /
    • 제9권2호
    • /
    • pp.111-116
    • /
    • 2010
  • In a large area magnetron sputtering system, which is under the influence of high heat load from the plasma, it is necessary to use the effective water cooling in order to maintain the proper deposition performance and the economic use of target materials. A series of three-dimensional numerical simulations are carried out on the simplified model of the large area magnetron sputtering system with the cooling plate that includes the U-shaped water channel. The analysis is focused on the effects of water channel geometry, cooling water flowrate, thermal conductivity of target material, and the degree of target erosion on the cooling performance of cooling plate, which is represented by the temperature distribution of target material.

온간 단조에서의 냉각방법에 따른 금형 수명 예측 (Prediction of Tool Life on Cooling System in Warm Forging)

  • 이현석
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2000년도 춘계학술대회논문집
    • /
    • pp.67-70
    • /
    • 2000
  • The tool life is not long enough under sever forming condition in warm forging. The tool life is affected by wear heat fatigue plastic deformation and so on. Especially wear is one of the most serious factors for tool life. To increase tool life we should consider various factors like processing design die design die materials lubrication and cooling system This study design to obtain the steady state temperature of die by FEM analysis under several conditions of cooling. There are four cooling conditions in this study no cooling internal cooling external cooling and both internal and external cooling. With above obtained temperatures tool life is predicted using Archard's model that is considered softening of die. The effect of internal cooling system is better than that of externally cooled die. To predict the die life the steady state temperature is calculated by using mean temperature of die. Considering only wear the die life much longer as the cooling effect is bigger. The more accurate die life will be predicted if we consider heat crack as well as wear.

  • PDF