• 제목/요약/키워드: the brain power

검색결과 301건 처리시간 0.032초

IDENTIFICATION OF GENES EXPRESSED IN LOW-DOSE-RATE γ-IRRADIATED MOUSE WHOLE BRAIN

  • Bong, Jin Jong;Kang, Yu Mi;Choi, Seung Jin;Kim, Dong-Kwon;Lee, Kyung Mi;Kim, Hee Sun
    • Journal of Radiation Protection and Research
    • /
    • 제38권4호
    • /
    • pp.166-171
    • /
    • 2013
  • While high-dose ionizing radiation results in long term cellular cytotoxicity, chronic low-dose (<0.2 Gy) of X- or ${\gamma}$-ray irradiation can be beneficial to living organisms by inducing radiation hormesis, stimulating immune function, and adaptive responses. During chronic low-dose-rate radiation (LDR) exposure, whole body of mice is exposed to radiation, however, it remains unclear if LDR causes changes in gene expression of the whole brain. Therefore, we aim to investigate expressed genes (EGs) and signaling pathways specifically regulated by LDR-irradiation ($^{137}Cs$, a cumulative dose of 1.7 Gy for total 100 days) in the whole brain. Using microarray analysis of whole brain RNA extracts harvested from ICR and AKR/J mice after LDR-irradiation, we discovered that two mice strains displayed distinct gene regulation patterns upon LDR-irradiation. In ICR mice, genes involved in ion transport, transition metal ion transport, and developmental cell growth were turned on while, in AKR/J mice, genes involved in sensory perception, cognition, olfactory transduction, G-protein coupled receptor pathways, inflammatory response, proteolysis, and base excision repair were found to be affected by LDR. We validated LDR-sensitive EGs by qPCR and confirmed specific upregulation of S100a7a, Olfr624, and Gm4868 genes in AKR/J mice whole brain. Therefore, our data provide the first report of genetic changes regulated by LDR in the mouse whole brain, which may affect several aspects of brain function.

Power spectrum density analysis for the influence of complete denture on the brain function of edentulous patients - pilot study

  • Perumal, Praveen;Chander, Gopi Naveen;Anitha, Kuttae Viswanathan;Reddy, Jetti Ramesh;Muthukumar, Balasubramanium
    • The Journal of Advanced Prosthodontics
    • /
    • 제8권3호
    • /
    • pp.187-193
    • /
    • 2016
  • PURPOSE. This pilot study was to find the influence of complete denture on the brain activity and cognitive function of edentulous patients measured through Electroencephalogram (EEG) signals. MATERIALS AND METHODS. The study recruited 20 patients aged from 50 to 60 years requiring complete dentures with inclusion and exclusion criteria. The brain function and cognitive function were analyzed with a mental state questionnaire and a 15-minute analysis of power spectral density of EEG alpha waves. The analysis included edentulous phase and post denture insertion adaptive phase, each done before and after chewing. The results obtained were statistically evaluated. RESULTS. Power Spectral Density (PSD) values increased from edentulous phase to post denture insertion adaption phase. The data were grouped as edentulous phase before chewing (EEG p1-0.0064), edentulous phase after chewing (EEG p2-0.0073), post denture insertion adaptive phase before chewing (EEG p3-0.0077), and post denture insertion adaptive phase after chewing (EEG p4-0.0096). The acquired values were statistically analyzed using paired t-test, which showed statistically significant results (P<.05). CONCLUSION. This pilot study showed functional improvement in brain function of edentulous patients with complete dentures rehabilitation.

An EEG-based Brain Mapping to Determine Mirror Neuron System in Patients with Chronic Stroke during Action Observation

  • Kuk, Eun-Ju;Kim, Jong-man
    • The Journal of Korean Physical Therapy
    • /
    • 제27권3호
    • /
    • pp.135-139
    • /
    • 2015
  • Purpose: The aim of this study was to compare EEG topographical maps in patients with chronic stroke after action observation physical training. Methods: Ten subjects were recruited from a medical hospital. Participants observed the action of transferring a small block from one box to another for 6 sessions of 1 minute each, and then performed the observed action for 3 minutes, 6 times. An EEG-based brain mapping system with 32 scalp sites was used to determine cortical reorganization in the regions of interest (ROIs) during observation of movement. The EEG-based brain mapping was comparison in within-group before and after training. ROIs included the primary sensorimotor cortex, premotor cortex, superior parietal lobule, inferior parietal lobule, superior temporal lobe, and visual cortex. EEG data were analyzed with an average log ratio in order to control the variability of the absolute mu power. The mu power log ratio was in within-group comparison with paired t-tests. Results: Participants showed activation prior to the intervention in all of the cerebral cortex, whereas the inferior frontal gyrus, superior frontal gyrus, precentral gyrus, and inferior parietal cortex were selectively activated after the training. There were no differences in mu power between each session. Conclusion: These findings suggest that action observation physical training contributes to attaining brain reorganization and improving brain functionality, as part of rehabilitation and intervention programs.

뇌(腦)와 심(心)의 한의학적 상관성에 대한 연구 (Study on the Relationship of Brain and Heart Based on Oriental Medicine)

  • 조학준
    • 동의생리병리학회지
    • /
    • 제19권6호
    • /
    • pp.1496-1503
    • /
    • 2005
  • This study aims to define the relationship between brain and heart through several literatures about oriental medicine and the conclusions are as follows. Heart in oriental medicine is called as Sinmyeongjishim(神明之心) which has a close connection with Mind, Consciousness, Emotion, and Physiological instinct of Drain in modern medicine. According to Oriental medicine, Brain stores Wonsin(元神) as Heart stores mind(神). Heart is where mind rests whereas Brain is where mind reveals. The external evidences that prove the relationship of Heart and Mind are as follows: First, with ears, eyes, mouth, and nose the subject of cognition is recognized as Sinmyeongjishim(神明之心). Second, Bulin(不仁), which means decreased movement power and sensibility of limbs, proves that Sinmyeongjishim(神明之心) is involved with movement power and sensibility of limbs. The physiological evidences that prove the relationship of Heart and Mind are as follows; First, Heart as the operation of Sinmyeongjishim(神明之心) manages language. Second, Heart is related with Tongue. Third, Heart is linked to Ears through the ear hole. Fourth, Heart is a store of Mind. Fifth, the five viscera control emotional and psychological activities. The pathological evidence of the relationship of Heart and Mind is that the symptoms of heart disease which are related to Sinmyeongjishim(神明之心) are also related to the functions of Brain. Though Brain has a close connection with Heart in oriental medicine, it is recognized that there are distinctive symptoms of disease of Brain and Hyeolyookjishim(血肉之心) respectively. The relationship of Heart and Brain has been researched in this study, even though there are not enough written materials about oriental medicine. But the fact that the majority of Heart operation is deeply connected with Brain activities cannot be denied. Therefore the research of Heart should be done as well as Brain in the clinical study of Brain.

가설 생성 학습 후에 나타난 초등 예비교사의 뇌파 변화 (EEG Changes after Learning for Hypothesis-Generation in Elementary Pre-service Teachers)

  • 권용주;박지영;신동훈
    • 한국초등과학교육학회지:초등과학교육
    • /
    • 제25권2호
    • /
    • pp.159-166
    • /
    • 2006
  • Changes in the brain activities following pre-service elementary teachers' learning hypothesis-generation were investigated using the analysis of EEG relative power and EEG coherence. In this study, the experimental group (n=16) were trained using learning methods for hypothesis-generation and the control group(n=16) were trained using learning methods for hypothesis-reception over the course of 8 weeks. EEG was measured before and following the learning process for both groups. Decreased theta ($4{\sim}7.9Hz$)/alpha 1 ($8{\sim}9.9Hz$) power and increased alpha 2 ($10{\sim}l2.9Hz$)/beta ($13{\sim}29.9Hz$)/gamma ($30{\sim}50Hz$) power were showed in the experimental group. Additionally, many changes in brian activities were observed for theta, beta and gamma coherence in the experimental group. In particular, fronto-parietal coherence increased in the experimental group. These differences in brain activities between the two groups suggest that the learning for subjects' hypothesis generation presumably leads to interesting changes in some types of brain activities in pre-service elementary teachers.

  • PDF

과학과 미술 통합프로그램이 초등과학영재의 뇌 활성에 미치는 효과 (The Effects of Science and Art Integrated Program on Brain Activity of Gifted Students in Science)

  • 권영식;이길재
    • 한국초등과학교육학회지:초등과학교육
    • /
    • 제32권4호
    • /
    • pp.567-580
    • /
    • 2013
  • This study is to activate gifted students' brains for creativity ability and also an integrated science and art teaching program. The learning programs integrating science and art, which have 30 periods and 10 topics on art and the knowledge of science, were developed dependant on five steps - observing, having interests and curiosity, experimental designing and performing, internalizing, and expressing in an arts-based manner. This programs were applied to 20 senior gifted students in Y Elementary School in Gyeonggi province, by one group pretest-posttest design. The results from these integrated programs of science and art are as follows: First, in the performance of science tasks, prefrontal lobe(F7, FT7) of left brain increase the relative power of theta wave, whereas in the performance of drawing tasks increase the relative power of beta wave in prefrontal lobe(FP1) of left brain, bilateral frontal(F7, F3, Fz, F4, F8, FT7, FC3, FCz), bilateral temporal(T7, TP7, TP8, P7), parietal lobe of left brain(CP3, CPz, P3, Pz), bilateral occipital(O1, Oz, O2). Second, in the performance of science tasks, the relative power of beta wave activity in the left temporal lobe(T7) of the brains of talented students in science significantly decreased whereas it was greatly activated in another part, the left frontal lobe(F3) of the brain (p<.05). Third, in the performance of drawing tasks, the relative power of theta wave activity in five areas of the brain, namely the left temporal lobe(T7), the left frontal lobe(F3), the right frontal lobe(F4), and the left and right parietal lobes of gifted students in science who took the course of the integrated programs, was considerably increased statistically(p<.05). On top of that, these programs were especially effective in balancing the symmetrical development of both cerebral hemispheres by multiplying theta wave activity in the frontal lobes(F3, F4) and the parietal lobes(CP3, P3, P4), which are particularly related to creative thinking. According to the results of this study of brain-based teaching strategies combining science and art, it is an effective program to develop overall activate gifted students' brains for creativity ability. This is expected to be utilized to activate the brain areas for creativity of gifted students in science.

Discriminative Power Feature Selection Method for Motor Imagery EEG Classification in Brain Computer Interface Systems

  • Yu, XinYang;Park, Seung-Min;Ko, Kwang-Eun;Sim, Kwee-Bo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제13권1호
    • /
    • pp.12-18
    • /
    • 2013
  • Motor imagery classification in electroencephalography (EEG)-based brain-computer interface (BCI) systems is an important research area. To simplify the complexity of the classification, selected power bands and electrode channels have been widely used to extract and select features from raw EEG signals, but there is still a loss in classification accuracy in the state-of- the-art approaches. To solve this problem, we propose a discriminative feature extraction algorithm based on power bands with principle component analysis (PCA). First, the raw EEG signals from the motor cortex area were filtered using a bandpass filter with ${\mu}$ and ${\beta}$ bands. This research considered the power bands within a 0.4 second epoch to select the optimal feature space region. Next, the total feature dimensions were reduced by PCA and transformed into a final feature vector set. The selected features were classified by applying a support vector machine (SVM). The proposed method was compared with a state-of-art power band feature and shown to improve classification accuracy.

휴지기 뇌파의 구역별 주파수 분석 (Spectral Analysis of Resting EEG in Brain Compartments)

  • 이미경
    • 수면정신생리
    • /
    • 제27권2호
    • /
    • pp.67-76
    • /
    • 2020
  • 목 적 : 뇌가 성숙해감에따라, 비대칭과 편측성역시 기능적, 효율적인 관점에서 볼 때, 성숙과 더불어 정보처리를 효과적으로 하기 위한 과정이라 할 수 있다. 인지적 복잡성이 높아지는 시기인 6~9세와 14~17세 사이의 뇌의 변화를 휴지기 뇌파를 주파수 분석을 하여 알아 본다. 방 법 : 본 연구는 6~9세(n = 24)와 14~17세(n = 26)의 피험자들의 뇌파는 공개된 자료(Multimodal Resource for Studying Information Processing in the Developing Brain, MIPDB)를 분석하였고, 정신과적 질환이 있거나, 잡파가 심한 뇌파의 피험자는 제외하여 최종적으로 6~9세(n = 14)와 14~17세(n = 11)을 대상으로, EEGlab을 이용하여 뇌파를 분석하였고, 적어도 2분이상의 휴지기 뇌파 중 눈을 감은 상태의 뇌파를 이용하여 주파수 분석을 하였다. 뇌의 구역을 총 9구획으로 나눠서 주파수 분석을 하여, 주파수별 비대칭성과 편측성을 측정하였다. 결 과 : 전반적으로 서파의 파워는 나이가 어릴수록 높았으며, 이 현상은 절대파워와 상대파워에 상관없이 나타났다. 베타밴드의 상대파워는 좌우 편측성없이 14~17세 그룹이 높았다. 비대칭성의 경향은 휴지기 뇌파에서 세타밴드와 알파밴드의 상대파워에서만 두 그룹간의 차이가 관찰되었으며, 세타파는 왼쪽 전두엽 구획에서 14~17세군이 오른쪽 전두엽구획에 비해서 높게 측정되었고, 이 현상은 두정엽 구획으로 갈 수록 반대의 경향, 즉 두정엽 구획에서는 오른쪽 세타밴드파워가 왼쪽의 세타밴드파워에비해서 높게 측정되었다. 알파밴드의 상대파워는 두정엽구획에서 왼쪽의 파워가 오른쪽의 파워보다 높게 측정되었다. 편측성을 보이는 주파수는 알파밴드였으며, 절대파워와 상대파워 모두에서 왼쪽의 알파밴드파워가 오른쪽에 비해서 높게 나타났으며 그 차이가 통계적으로 유의미하였다. 결 론 : 6~9세의 피험자들에 비해서 14~17세의 피험자들은 성장기를 거치며 비교적 수준이 높은 인지기능 및 수행기능을 하게 되고, 이 기능과 관련하여 베타밴드와 알파밴드가 이 변화를 반영한다고 볼 수 있다.

수술실 의료진의 뇌사자 장기기증 태도 관련 요인 (Factors Affecting Attitudes toward Brain Death Organ Donation among Nurses and Doctors in an Operating Room)

  • 조은정;신기수
    • 동서간호학연구지
    • /
    • 제28권1호
    • /
    • pp.49-56
    • /
    • 2022
  • Purpose: This study was conducted to identify the factors affecting the attitudes toward brain death organ donation among nurses and doctors in an operating room. Methods: A descriptive research was used. The participants included 90 nurses and 30 doctors who had experience of operating organ transplantation for brain death organ donation. Data were collected from March 12 to May 23, 2020 in the one tertiary general hospital. The outcome measures were perception and attitude of death and attitude towards brain death organ donation. Results: Attitudes toward brain death organ donation was influenced by type of occupation, intention of organ donation and attitude toward death. In addition, the explanatory power of the total variance was 52.1%. Conclusions: Based on the results, it is necessary to prepare an intervention to improve awareness of the brain death and the brain death organ donation.

EEG 신호의 Power Spectrum을 이용한 사람의 감정인식 방법 : Bayesian Networks와 상대 Power values 응용 (Human Emotion Recognition using Power Spectrum of EEG Signals : Application of Bayesian Networks and Relative Power Values)

  • 염홍기;한철훈;김호덕;심귀보
    • 한국지능시스템학회논문지
    • /
    • 제18권2호
    • /
    • pp.251-256
    • /
    • 2008
  • 많은 연구자들은 여러 개의 채널을 가진 Electroencephalogram(EEG) 신호를 기반으로 한 사람의 감정인식을 위해 두뇌와 컴퓨터의 인터페이스에 관한 연구를 하고 있다. EEG 신호를 이용한 연구들은 주로 의학 분야와 심리학의 영역에서 간질이나 발작 등을 알아내고 거짓말 탐지기로써의 역할로 많이 사용되어져 왔다. 최근에는 사람의 두뇌와 컴퓨터 간의 인터페이스에 관한 연구들이 뇌파를 이용한 로봇의 제어하거나 게임을 하는 등의 여러 가지 공학적인 접근으로써 많은 연구가 진행되고 있다. 특히, EEG 신호를 통해서 두뇌를 연구하는 분야에서 EEG 신호의 잡음을 제거해서 보다 정확한 신호를 추출하는 연구에도 많이 중점을 두고 있다. 본 논문에서는 사람의 감정에 따른 EEG 신호를 측정하고 측정된 EEG 신호를 5개 부분의 주파수 영역으로 분류하였다. 영역별로 분류된 EEG 신호들은 전체영역에 대한 상대적인 비율의 값으로 계산하게 된다. 그 값들은 Bayesian Networks를 통해서 현재 어떠한 감정을 나타내는지 확률 값으로 나타낸다. 그 결과 값에 따라 사람의 감정은 아바타로 표현하게 된다.