• 제목/요약/키워드: the Volume of Google Search

검색결과 17건 처리시간 0.022초

Nowcast of TV Market using Google Trend Data

  • Youn, Seongwook;Cho, Hyun-chong
    • Journal of Electrical Engineering and Technology
    • /
    • 제11권1호
    • /
    • pp.227-233
    • /
    • 2016
  • Google Trends provides weekly information on keyword search frequency on the Google search engine. Search volume patterns for the search keyword can also be analyzed based on category and by the location of those making the search. Also, Google provides “Hot searches” and “Top charts” including top and rising searches that include the search keyword. All this information is kept up to date, and allows trend comparisons by providing past weekly figures. In this study, we present a predictive model for TV markets using the searched data in Google search engine (Google Trend data). Using a predictive model for the market and analysis of the Google Trend data, we obtained an efficient and meaningful result for the TV market, and also determined highly ranked countries and cities. This method can provide very useful information for TV manufacturers and others.

Does Rain Really Cause Toothache? Statistical Analysis Based on Google Trends

  • Jeon, Se-Jeong
    • 치위생과학회지
    • /
    • 제21권2호
    • /
    • pp.104-110
    • /
    • 2021
  • Background: Regardless of countries, the myth that rain makes the body ache has been worded in various forms, and a number of studies have been reported to investigate this. However, these studies, which depended on the patient's experience or memory, had obvious limitations. Google Trends is a big data analysis service based on search terms and viewing videos provided by Google LLC, and attempts to use it in various fields are continuing. In this study, we endeavored to introduce the 'value as a research tool' of the Google Trends, that has emerged along with technological advancements, through research on 'whether toothaches really occur frequently on rainy days'. Methods: Keywords were selected as objectively as possible by applying web crawling and text mining techniques, and the keyword "bi" meaning rain in Korean was added to verify the reliability of Google Trends data. The correlation was statistically analyzed using precipitation and temperature data provided by the Korea Meteorological Agency and daily search volume data provided by Google Trends. Results: Keywords "chi-gwa", "chi-tong", and "chung-chi" were selected, which in Korean mean 'dental clinic', 'toothache', and 'tooth decay' respectively. A significant correlation was found between the amount of precipitation and the search volume of tooth decay. No correlation was found between precipitation and other keywords or other combinations. It was natural that a very significant correlation was found between the amount of precipitation, temperature, and the search volume of "bi". Conclusion: Rain seems to actually be a cause of toothache, and if objective keyword selection is premised, Google Trends is considered to be very useful as a research tool in the future.

K-뷰티(K-Beauty) 검색량이 수출과 관광에 미치는 영향: Google과 YouTube 검색 데이터 분석을 중심으로 (The Impact of K-Beauty Search Volumes on Export and Tourism: Based on the Google Search and YouTube Page View)

  • 이선정;이수범
    • 문화경제연구
    • /
    • 제20권2호
    • /
    • pp.119-147
    • /
    • 2017
  • 본 연구는 한류를 이끌어갈 새로운 성장 동력으로써 K-뷰티(K-Beauty)의 경제적 영향력을 파악하고자 하였다. K-뷰티 콘텐츠가 주로 온라인을 기반으로 확산된다는 점을 고려하여 K-뷰티에 대한 관심과 관여도를 파악할 수 있는 변수로 검색 빅데이터에 주목하였다. 이에 2008년부터 2016년까지 9년간 K-뷰티에 대한 웹 검색량과 유튜브 검색량을 독립변수로, 화장품 수출액과 외래관광객 수를 종속변수로 설정하였으며 GDP와 국가 거리를 통제변수로 하는 다중회귀분석을 실시하였다. 분석 결과, K-뷰티 관련 구글 웹 검색량은 통제변인의 영향 유무와 관계없이 화장품 수출액에 정적인 영향을 미치며, 외래관광객 수에도 정적 영향을 미치는 것으로 나타났다. 한편, 유튜브 검색량은 화장품 수출액에는 정적영향을 미치는 것으로 나타났으나 외래관광객 수에는 유의미한 영향을 미치지 못하는 것으로 나타났다. 본 연구는 신한류 콘텐츠로서 K-뷰티에 대한 영향력을 검증하고 웹 검색량과 유튜브 검색량이 경제적 지표에 미치는 영향력을 실증적으로 검증하였다. 이러한 분석결과를 기반으로 향후 K-뷰티 홍보 방안에 대한 전략에 대해 논하였다.

A Study on Change in Perception of Community Service and Demand Prediction based on Big Data

  • Chun-Ok, Jang
    • International Journal of Advanced Culture Technology
    • /
    • 제10권4호
    • /
    • pp.230-237
    • /
    • 2022
  • The Community Social Service Investment project started as a state subsidy project in 2007 and has grown very rapidly in quantitative terms in a short period of time. It is a bottom-up project that discovers the welfare needs of people and plans and provides services suitable for them. The purpose of this study is to analyze using big data to determine the social response to local community service investment projects. For this, data was collected and analyzed by crawling with a specific keyword of community service investment project on Google and Naver sites. As for the analysis contents, monthly search volume, related keywords, monthly search volume, search rate by age, and gender search rate were conducted. As a result, 10 items were found as related keywords in Google, and 3 items were found in Naver. The overall results of Google and Naver sites were slightly different, but they increased and decreased at almost the same time. Therefore, it can be seen that the community service investment project continues to attract users' interest.

인터넷 검색추세를 활용한 빅데이터 기반의 주식투자전략에 대한 연구 (A Study on Big Data Based Investment Strategy Using Internet Search Trends)

  • 김민수;구평회
    • 한국경영과학회지
    • /
    • 제38권4호
    • /
    • pp.53-63
    • /
    • 2013
  • Together with soaring interest on Big Data, now there are vigorous reports that unearth various social values lying underneath those data from a number of application areas. Among those reports many are using such data as Internet search histories from Google site, social relationships from Facebook, and transactional or locational traces collected from various ubiquitous devices. Many of those researches, however, are conducted based on the data sets that are accumulated over the North American and European areas, which means that direct interpretation and application of social values exhibited by those researches to the other areas like Korea can be a disturbing task. This research has started from a validation study against Korean environment of the former paper which says an investment strategy that exploits up and down of Google search volume on a carefully selected set of terms shows high market performance. A huge difference between North American and Korean environment can be eye witnessed via the distinction in profit rates that are exhibited by the corresponding set of search terms. Two sets of search terms actually presented low correlation in their profit rates over two financial markets. Even in an experiment which compares the profit rates with two different investment periods with the same set of search terms showed no such meaningful result that outperforms the market average. With all these results, we cautiously conclude that establishing an investment strategy that exploits Internet search volume over a specified word set needs more conscious approach.

Search-based Sentiment and Stock Market Reactions: An Empirical Evidence in Vietnam

  • Nguyen, Du D.;Pham, Minh C.
    • The Journal of Asian Finance, Economics and Business
    • /
    • 제5권4호
    • /
    • pp.45-56
    • /
    • 2018
  • The paper aims to examine relationships between search-based sentiment and stock market reactions in Vietnam. This study constructs an internet search-based measure of sentiment and examines its relationship with Vietnamese stock market returns. The sentiment index is derived from Google Trends' Search Volume Index of financial and economic terms that Vietnamese searched from January 2011 to June 2018. Consistent with prediction from sentiment theories, the study documents significant short-term reversals across three major stock indices. The difference from previous literature is that Vietnam stock market absorbs the contemporaneous decline slower while the subsequent rebound happens within a day. The results of the study suggest that the sentiment-induced effect is mainly driven by pessimism. On the other hand, optimistic investors seem to delay in taking their investment action until the market corrects. The study proposes a unified explanation for our findings based on the overreaction hypothesis of the bearish group and the strategic delay of the optimistic group. The findings of the study contribute to the behavioral finance strand that studies the role of sentiment in emerging financial markets, where noise traders and limits to arbitrage are more obvious. They also encourage the continuous application of search data to explore other investor behaviors in securities markets.

자살 및 관련 질환과 침치료 및 혈위지압에 대한 대중과 연구자의 관심도 분석: Google Trends와 주요 전자 데이터베이스를 이용하여 (Analysis of Public and Researcher Interests in Suicide and Related Illnesses, and Acupuncture and Acupressure: Utilizing Google Trends and Major Electronic Database)

  • 강성현;이정경;권찬영
    • 동의신경정신과학회지
    • /
    • 제34권3호
    • /
    • pp.235-245
    • /
    • 2023
  • Objectives: The aim of this study was to analyze public and researcher interests in suicide and related illnesses and acupuncture and acupressure treatment using Google Trends and some electronic databases. Methods: Search results for keywords "suicide," "acupuncture," "acupressure," and several illnesses related to suicide were analyzed in Google Trends from January 2004 to June 2023. Illnesses included anxiety, depression (including major depressive disorder), schizophrenia, bipolar disorder, post- traumatic stress disorder (PTSD), eating disorder (including anorexia nervosa and bulimia nervosa), substance use disorder, autism spectrum disorder, personality disorder (including borderline person- ality disorder), and chronic pain. Search results were extracted using relative search volume (RSV) scores between 0 and 100. Search terms were also searched in online databases, including PubMed, CNKI, and OASIS, to estimate the number of related studies, and descriptive analysis was conducted. Results: Google Trends analysis showed a strong positive correlation between the RSVs of "suicide and depression," "acupuncture and chronic pain," and "acupressure and PTSD." The electronic database search results produced numerous studies published on "suicide and depression," "acupuncture and depression," and "acupressure and anxiety." High interest in "suicide and depression," "acupuncture and chronic pain," and "acupressure and anxiety" was seen among the public and researchers. Interest in "suicide and chronic pain," "acupuncture and eating disorder," and "acupressure and PTSD" was higher in the public than among researchers, while "anxiety and suicide" and "anxiety and acu- puncture" showed opposite trends. Conclusions: The results of this research enable an understanding of public and researcher interest in suicide, acupuncture, acupressure, and suicide-related illnesses. The results also provide a basis for fu- ture research and examining public health implications in Korean medicine.

검색 트래픽 정보를 활용한 고속도로 교통지표 분석 연구 (Analysis of Highway Traffic Indices Using Internet Search Data)

  • 류인곤;이재영;박경철;최기주;황준문
    • 대한교통학회지
    • /
    • 제33권1호
    • /
    • pp.14-28
    • /
    • 2015
  • 2000년대 중반부터 인터넷 검색 트래픽을 활용한 다양한 연구가 진행되었다. 대표적으로 구글은 미국의 독감 발병 상황을 인터넷 유저의 검색 패턴을 통해 예측하는 서비스를 만들기도 하였다. 교통지표 역시 인터넷 검색 패턴과 유사할 수 있다는 가설을 확인하기 위하여, 검색 트래픽 데이터를 활용하여 고속도로의 진입 교통량과 구간 속도를 추정하는 모형을 구축하고 적합도 등을 확인하는 것이 본 연구의 목적이다. 그 결과, 첫째, 출퇴근의 상시적 통행이 이루어지는 지점의 TCS 진입 교통량 모형은 구글 검색 트래픽이 입력변수로 우수하였고, 검색 트래픽과는 음의 상관관계를 보였다. 둘째, 여가 통행이 집중적으로 나타났던 지점의 TCS 진입 교통량 모형은 네이버의 검색 트래픽이 입력변수로 선정되었으며, 검색 트래픽과는 양의 상관관계가 나타났다. 셋째, VDS 속도의 경우 시계열 도표상 검색 트래픽과 음의 상관관계를 보였다. 넷째, 검색 트래픽을 입력변수로 활용한 전이함수 잡음 시계열 모형은 그렇지 않은 시계열 모형에 비해 비교적 적합도가 우수하다는 결과를 도출하였다. 다만, VDS 속도 모형의 경우 다수의 입력변수가 포함되고 모형 계수의 부호가 상이함에 따른 한계가 존재하였다. 향후 검색 트래픽의 출처나 검색어, 혹은 시차 및 집계 단위에 대한 추가적 연구가 진행된다면, 교통 분야의 빅 데이터 연구시 활용 폭이 넓어질 것으로 판단된다.

구글 트렌드 빅데이터를 통한 바이오의약품의 시장 점유율 분석과 추정 (Analysis and Estimation for Market Share of Biologics based on Google Trends Big Data)

  • 봉기태;이희상
    • 산업경영시스템학회지
    • /
    • 제43권2호
    • /
    • pp.14-24
    • /
    • 2020
  • Google Trends is a useful tool not only for setting search periods, but also for providing search volume to specific countries, regions, and cities. Extant research showed that the big data from Google Trends could be used for an on-line market analysis of opinion sensitive products instead of an on-site survey. This study investigated the market share of tumor necrosis factor-alpha (TNF-α) inhibitor, which is in a great demand pharmaceutical product, based on big data analysis provided by Google Trends. In this case study, the consumer interest data from Google Trends were compared to the actual product sales of Top 3 TNF-α inhibitors (Enbrel, Remicade, and Humira). A correlation analysis and relative gap were analyzed by statistical analysis between sales-based market share and interest-based market share. Besides, in the country-specific analysis, three major countries (USA, Germany, and France) were selected for market share analysis for Top 3 TNF-α inhibitors. As a result, significant correlation and similarity were identified by data analysis. In the case of Remicade's biosimilars, the consumer interest in two biosimilar products (Inflectra and Renflexis) increased after the FDA approval. The analytical data showed that Google Trends is a powerful tool for market share estimation for biosimilars. This study is the first investigation in market share analysis for pharmaceutical products using Google Trends big data, and it shows that global and regional market share analysis and estimation are applicable for the interest-sensitive products.

빅 데이터를 이용한 임플란트에 대한 관심도 분석: 웹 기반 연구 (Analysis of interest in implant using a big data: A web-based study)

  • 공현준
    • 대한치과보철학회지
    • /
    • 제59권2호
    • /
    • pp.164-172
    • /
    • 2021
  • 목적: 본 연구는 구글 트렌드를 이용하여 일반적인 인터넷 사용자들이 치과 임플란트에 대해 가지고 있는 관심도를 분석하고, 관심도의 수준을 국민건강보험공단의 빅 데이터와 비교하기 위함이다. 재료 및 방법: 구글 트렌드는 검색 키워드에 대한 상대적 검색 볼륨을 제공하는데, 이것은 특정 기간 동안의 검색 빈도를 시각화하여 보여주는 평균 데이터이다. 임플란트를 검색어로 선정하여, 2015년에서 2019년까지의 일반적인 인터넷 사용자들의 관심도를 추세선과 6개월 이동평균선을 이용하여 분석하였다. 다음으로, 임플란트에 대한 상대적 검색 볼륨을 국민건강보험의 적용을 받아 임플란트를 식립한 환자 수의 변화와 함께 비교하였다. 임플란트와 전통적인 의치에 대한 상대적 관심도를 비교하였으며, 임플란트와 관련된 주요 연관 검색어를 분석하였다. 결과: 임플란트에 대한 상대적 검색 볼륨은 점진적으로 증가하였으며, 국민건강보험 혜택을 받은 환자 수와 유의한 양의 상관관계를 보였다 (P < .01). 임플란트에 대한 관심도는 모든 기간에 있어서 의치에 비해 높았다. 연관 검색어로는 임플란트 비용이 가장 빈번하게 관찰되었으며, 임플란트 과정에 대한 검색이 증가하였다. 결론: 본 제한된 연구의 결과를 근거로, 임플란트에 대한 대중의 관심은 점진적으로 증가하고 있으며, 관심의 세부 분야는 변하고 있다. 또한 웹 기반의 구글 트렌드 데이터를 전통적인 방식의 데이터와 비교한 결과, 유의한 상관관계를 확인할 수 있었다.