Google Trends provides weekly information on keyword search frequency on the Google search engine. Search volume patterns for the search keyword can also be analyzed based on category and by the location of those making the search. Also, Google provides “Hot searches” and “Top charts” including top and rising searches that include the search keyword. All this information is kept up to date, and allows trend comparisons by providing past weekly figures. In this study, we present a predictive model for TV markets using the searched data in Google search engine (Google Trend data). Using a predictive model for the market and analysis of the Google Trend data, we obtained an efficient and meaningful result for the TV market, and also determined highly ranked countries and cities. This method can provide very useful information for TV manufacturers and others.
Background: Regardless of countries, the myth that rain makes the body ache has been worded in various forms, and a number of studies have been reported to investigate this. However, these studies, which depended on the patient's experience or memory, had obvious limitations. Google Trends is a big data analysis service based on search terms and viewing videos provided by Google LLC, and attempts to use it in various fields are continuing. In this study, we endeavored to introduce the 'value as a research tool' of the Google Trends, that has emerged along with technological advancements, through research on 'whether toothaches really occur frequently on rainy days'. Methods: Keywords were selected as objectively as possible by applying web crawling and text mining techniques, and the keyword "bi" meaning rain in Korean was added to verify the reliability of Google Trends data. The correlation was statistically analyzed using precipitation and temperature data provided by the Korea Meteorological Agency and daily search volume data provided by Google Trends. Results: Keywords "chi-gwa", "chi-tong", and "chung-chi" were selected, which in Korean mean 'dental clinic', 'toothache', and 'tooth decay' respectively. A significant correlation was found between the amount of precipitation and the search volume of tooth decay. No correlation was found between precipitation and other keywords or other combinations. It was natural that a very significant correlation was found between the amount of precipitation, temperature, and the search volume of "bi". Conclusion: Rain seems to actually be a cause of toothache, and if objective keyword selection is premised, Google Trends is considered to be very useful as a research tool in the future.
본 연구는 한류를 이끌어갈 새로운 성장 동력으로써 K-뷰티(K-Beauty)의 경제적 영향력을 파악하고자 하였다. K-뷰티 콘텐츠가 주로 온라인을 기반으로 확산된다는 점을 고려하여 K-뷰티에 대한 관심과 관여도를 파악할 수 있는 변수로 검색 빅데이터에 주목하였다. 이에 2008년부터 2016년까지 9년간 K-뷰티에 대한 웹 검색량과 유튜브 검색량을 독립변수로, 화장품 수출액과 외래관광객 수를 종속변수로 설정하였으며 GDP와 국가 거리를 통제변수로 하는 다중회귀분석을 실시하였다. 분석 결과, K-뷰티 관련 구글 웹 검색량은 통제변인의 영향 유무와 관계없이 화장품 수출액에 정적인 영향을 미치며, 외래관광객 수에도 정적 영향을 미치는 것으로 나타났다. 한편, 유튜브 검색량은 화장품 수출액에는 정적영향을 미치는 것으로 나타났으나 외래관광객 수에는 유의미한 영향을 미치지 못하는 것으로 나타났다. 본 연구는 신한류 콘텐츠로서 K-뷰티에 대한 영향력을 검증하고 웹 검색량과 유튜브 검색량이 경제적 지표에 미치는 영향력을 실증적으로 검증하였다. 이러한 분석결과를 기반으로 향후 K-뷰티 홍보 방안에 대한 전략에 대해 논하였다.
International Journal of Advanced Culture Technology
/
제10권4호
/
pp.230-237
/
2022
The Community Social Service Investment project started as a state subsidy project in 2007 and has grown very rapidly in quantitative terms in a short period of time. It is a bottom-up project that discovers the welfare needs of people and plans and provides services suitable for them. The purpose of this study is to analyze using big data to determine the social response to local community service investment projects. For this, data was collected and analyzed by crawling with a specific keyword of community service investment project on Google and Naver sites. As for the analysis contents, monthly search volume, related keywords, monthly search volume, search rate by age, and gender search rate were conducted. As a result, 10 items were found as related keywords in Google, and 3 items were found in Naver. The overall results of Google and Naver sites were slightly different, but they increased and decreased at almost the same time. Therefore, it can be seen that the community service investment project continues to attract users' interest.
Together with soaring interest on Big Data, now there are vigorous reports that unearth various social values lying underneath those data from a number of application areas. Among those reports many are using such data as Internet search histories from Google site, social relationships from Facebook, and transactional or locational traces collected from various ubiquitous devices. Many of those researches, however, are conducted based on the data sets that are accumulated over the North American and European areas, which means that direct interpretation and application of social values exhibited by those researches to the other areas like Korea can be a disturbing task. This research has started from a validation study against Korean environment of the former paper which says an investment strategy that exploits up and down of Google search volume on a carefully selected set of terms shows high market performance. A huge difference between North American and Korean environment can be eye witnessed via the distinction in profit rates that are exhibited by the corresponding set of search terms. Two sets of search terms actually presented low correlation in their profit rates over two financial markets. Even in an experiment which compares the profit rates with two different investment periods with the same set of search terms showed no such meaningful result that outperforms the market average. With all these results, we cautiously conclude that establishing an investment strategy that exploits Internet search volume over a specified word set needs more conscious approach.
The Journal of Asian Finance, Economics and Business
/
제5권4호
/
pp.45-56
/
2018
The paper aims to examine relationships between search-based sentiment and stock market reactions in Vietnam. This study constructs an internet search-based measure of sentiment and examines its relationship with Vietnamese stock market returns. The sentiment index is derived from Google Trends' Search Volume Index of financial and economic terms that Vietnamese searched from January 2011 to June 2018. Consistent with prediction from sentiment theories, the study documents significant short-term reversals across three major stock indices. The difference from previous literature is that Vietnam stock market absorbs the contemporaneous decline slower while the subsequent rebound happens within a day. The results of the study suggest that the sentiment-induced effect is mainly driven by pessimism. On the other hand, optimistic investors seem to delay in taking their investment action until the market corrects. The study proposes a unified explanation for our findings based on the overreaction hypothesis of the bearish group and the strategic delay of the optimistic group. The findings of the study contribute to the behavioral finance strand that studies the role of sentiment in emerging financial markets, where noise traders and limits to arbitrage are more obvious. They also encourage the continuous application of search data to explore other investor behaviors in securities markets.
Objectives: The aim of this study was to analyze public and researcher interests in suicide and related illnesses and acupuncture and acupressure treatment using Google Trends and some electronic databases. Methods: Search results for keywords "suicide," "acupuncture," "acupressure," and several illnesses related to suicide were analyzed in Google Trends from January 2004 to June 2023. Illnesses included anxiety, depression (including major depressive disorder), schizophrenia, bipolar disorder, post- traumatic stress disorder (PTSD), eating disorder (including anorexia nervosa and bulimia nervosa), substance use disorder, autism spectrum disorder, personality disorder (including borderline person- ality disorder), and chronic pain. Search results were extracted using relative search volume (RSV) scores between 0 and 100. Search terms were also searched in online databases, including PubMed, CNKI, and OASIS, to estimate the number of related studies, and descriptive analysis was conducted. Results: Google Trends analysis showed a strong positive correlation between the RSVs of "suicide and depression," "acupuncture and chronic pain," and "acupressure and PTSD." The electronic database search results produced numerous studies published on "suicide and depression," "acupuncture and depression," and "acupressure and anxiety." High interest in "suicide and depression," "acupuncture and chronic pain," and "acupressure and anxiety" was seen among the public and researchers. Interest in "suicide and chronic pain," "acupuncture and eating disorder," and "acupressure and PTSD" was higher in the public than among researchers, while "anxiety and suicide" and "anxiety and acu- puncture" showed opposite trends. Conclusions: The results of this research enable an understanding of public and researcher interest in suicide, acupuncture, acupressure, and suicide-related illnesses. The results also provide a basis for fu- ture research and examining public health implications in Korean medicine.
2000년대 중반부터 인터넷 검색 트래픽을 활용한 다양한 연구가 진행되었다. 대표적으로 구글은 미국의 독감 발병 상황을 인터넷 유저의 검색 패턴을 통해 예측하는 서비스를 만들기도 하였다. 교통지표 역시 인터넷 검색 패턴과 유사할 수 있다는 가설을 확인하기 위하여, 검색 트래픽 데이터를 활용하여 고속도로의 진입 교통량과 구간 속도를 추정하는 모형을 구축하고 적합도 등을 확인하는 것이 본 연구의 목적이다. 그 결과, 첫째, 출퇴근의 상시적 통행이 이루어지는 지점의 TCS 진입 교통량 모형은 구글 검색 트래픽이 입력변수로 우수하였고, 검색 트래픽과는 음의 상관관계를 보였다. 둘째, 여가 통행이 집중적으로 나타났던 지점의 TCS 진입 교통량 모형은 네이버의 검색 트래픽이 입력변수로 선정되었으며, 검색 트래픽과는 양의 상관관계가 나타났다. 셋째, VDS 속도의 경우 시계열 도표상 검색 트래픽과 음의 상관관계를 보였다. 넷째, 검색 트래픽을 입력변수로 활용한 전이함수 잡음 시계열 모형은 그렇지 않은 시계열 모형에 비해 비교적 적합도가 우수하다는 결과를 도출하였다. 다만, VDS 속도 모형의 경우 다수의 입력변수가 포함되고 모형 계수의 부호가 상이함에 따른 한계가 존재하였다. 향후 검색 트래픽의 출처나 검색어, 혹은 시차 및 집계 단위에 대한 추가적 연구가 진행된다면, 교통 분야의 빅 데이터 연구시 활용 폭이 넓어질 것으로 판단된다.
Google Trends is a useful tool not only for setting search periods, but also for providing search volume to specific countries, regions, and cities. Extant research showed that the big data from Google Trends could be used for an on-line market analysis of opinion sensitive products instead of an on-site survey. This study investigated the market share of tumor necrosis factor-alpha (TNF-α) inhibitor, which is in a great demand pharmaceutical product, based on big data analysis provided by Google Trends. In this case study, the consumer interest data from Google Trends were compared to the actual product sales of Top 3 TNF-α inhibitors (Enbrel, Remicade, and Humira). A correlation analysis and relative gap were analyzed by statistical analysis between sales-based market share and interest-based market share. Besides, in the country-specific analysis, three major countries (USA, Germany, and France) were selected for market share analysis for Top 3 TNF-α inhibitors. As a result, significant correlation and similarity were identified by data analysis. In the case of Remicade's biosimilars, the consumer interest in two biosimilar products (Inflectra and Renflexis) increased after the FDA approval. The analytical data showed that Google Trends is a powerful tool for market share estimation for biosimilars. This study is the first investigation in market share analysis for pharmaceutical products using Google Trends big data, and it shows that global and regional market share analysis and estimation are applicable for the interest-sensitive products.
목적: 본 연구는 구글 트렌드를 이용하여 일반적인 인터넷 사용자들이 치과 임플란트에 대해 가지고 있는 관심도를 분석하고, 관심도의 수준을 국민건강보험공단의 빅 데이터와 비교하기 위함이다. 재료 및 방법: 구글 트렌드는 검색 키워드에 대한 상대적 검색 볼륨을 제공하는데, 이것은 특정 기간 동안의 검색 빈도를 시각화하여 보여주는 평균 데이터이다. 임플란트를 검색어로 선정하여, 2015년에서 2019년까지의 일반적인 인터넷 사용자들의 관심도를 추세선과 6개월 이동평균선을 이용하여 분석하였다. 다음으로, 임플란트에 대한 상대적 검색 볼륨을 국민건강보험의 적용을 받아 임플란트를 식립한 환자 수의 변화와 함께 비교하였다. 임플란트와 전통적인 의치에 대한 상대적 관심도를 비교하였으며, 임플란트와 관련된 주요 연관 검색어를 분석하였다. 결과: 임플란트에 대한 상대적 검색 볼륨은 점진적으로 증가하였으며, 국민건강보험 혜택을 받은 환자 수와 유의한 양의 상관관계를 보였다 (P < .01). 임플란트에 대한 관심도는 모든 기간에 있어서 의치에 비해 높았다. 연관 검색어로는 임플란트 비용이 가장 빈번하게 관찰되었으며, 임플란트 과정에 대한 검색이 증가하였다. 결론: 본 제한된 연구의 결과를 근거로, 임플란트에 대한 대중의 관심은 점진적으로 증가하고 있으며, 관심의 세부 분야는 변하고 있다. 또한 웹 기반의 구글 트렌드 데이터를 전통적인 방식의 데이터와 비교한 결과, 유의한 상관관계를 확인할 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.