• Title/Summary/Keyword: the Islam State(IS)

Search Result 38, Processing Time 0.023 seconds

Malaysia's 13th General Election: Sabah-Barisan Nasional Fixed-Deposit State? (말레이시아 13대 총선: 사바주(Sabah)는 국민전선의 텃밭인가?)

  • ZAINI, Othman;EKO, Prayitno Joko;RAMLI, Dollah;AMRULLAH, Maraining;KIM, Jong Eop
    • The Southeast Asian review
    • /
    • v.26 no.3
    • /
    • pp.91-118
    • /
    • 2016
  • As all are aware, the results of the Malaysia 12th General Election (GE-12) in 2008 have surprised many. Not only the dominant parties Barisan Nasional (BN) were shocked by the loss of significant numbers of seats but for the first time in the history of Malaysia politics, vis-${\grave{a}}$-vis, electoral affairs, they were denied a two-thirds majority in the Parliament. Notwithstanding the opposition parties such as Parti Islam Se-Malaysia (PAS), Democratic Action Party (DAP) and Parti Keadilan Rakyat (PKR: The People's Justice Party) that form the opposition coalition called Pakatan Rakyat (People's Alliance: PR), has come to a surprised with the GE-12 result, in which they not even think that were able to challenge hegemonic politics of BN, managed to capture and formed a government at the state level namely Kedah, Penang, Perak, and Selangor, except Kelantan which has been under the control of PAS since the 1990 general election. This article aims to analyze whether Sabah as a "fixed deposit"state is still relevant in understanding the continuity and survival of the BN political hegemony in the context of Malaysia political developments post-13th general election.

Aerodynamic behaviour of double hinged articulated loading platforms

  • Zaheer, Mohd Moonis;Hasan, Syed Danish;Islam, Nazrul;Aslam, Moazzam
    • Ocean Systems Engineering
    • /
    • v.11 no.1
    • /
    • pp.17-42
    • /
    • 2021
  • Articulated loading platforms (ALPs) belongs to a class of offshore structures known as compliant. ALP motions have time periods falling in the wind excitation frequency range due to their compliant behaviour. This paper deals with the dynamic behavior of a double hinged ALP subjected to low-frequency wind forces with random waves. Nonlinear effects due to variable submergence, fluctuating buoyancy, variable added mass, and hydrodynamic forces are considered in the analysis. The random sea state is characterized by the Pierson-Moskowitz (P-M) spectrum. The wave forces on the submerged elements of the platform's shaft are calculated using Morison's Equation with Airy's linear wave theory ignoring diffraction effects. The fluctuating wind load has been estimated using Ochi and Shin wind velocity spectrum for offshore structures. The nonlinear dynamic equation of motion is solved in the time domain by the Wilson-θ method. The wind-structure interactions, along with the effect of various other parameters on the platform response, are investigated. The effect of offset of aerodynamic center (A.C.) with the center of gravity (C.G.) of platform superstructure has also been investigated. The outcome of the analyses indicates that low-frequency wind forces affect the response of ALP to a large extent, which otherwise is not enhanced in the presence of only waves. The mean wind modifies the mean position of the platform surge response to the positive side, causing an offset. Various power spectral densities (PSDs) under high and moderate sea states show that apart from the significant peak occurring at the two natural frequencies, other prominent peaks also appear at very low frequencies showing the influence of wind on the response.

Moment-rotational analysis of soil during mining induced ground movements by hybrid machine learning assisted quantification models of ELM-SVM

  • Dai, Bibo;Xu, Zhijun;Zeng, Jie;Zandi, Yousef;Rahimi, Abouzar;Pourkhorshidi, Sara;Khadimallah, Mohamed Amine;Zhao, Xingdong;El-Arab, Islam Ezz
    • Steel and Composite Structures
    • /
    • v.41 no.6
    • /
    • pp.831-850
    • /
    • 2021
  • Surface subsidence caused by mining subsidence has an impact on neighboring structures and utilities. In other words, subsurface voids created by mining or tunneling activities induce soil movement, exposing buildings to physical and/or functional destruction. Soil-structure is evaluated employing probability distribution laws to account for their uncertainty and complexity to estimate structural vulnerability. In this study, to investigate the displacement field and surface settlement profile caused by mining subsidence, on the basis of a Winklersoil model, analytical equations for the moment-rotation response ofsoil during mining induced ground movements are developed. To define the full static moment-rotation response, an equation for the uplift-yield state is constructed and integrated with equations for the uplift- and yield-only conditions. The constructed model's findings reveal that the inverse of the factor of safety (x) has a considerable influence on the moment-rotation curve. The maximal moment-rotation response of the footing is defined by X = 0:6. Despite the use of Winkler model, the computed moment-rotation response results derived from the literature were analyzed through the ELM-SVM hybrid of Extreme Learning Machine (ELM) and Support Vector Machine (SVM). Also, Monte Carlo simulations are used to apply continuous random parameters to assess the transmission of ground motions to structures. Following the findings of RMSE and R2, the results show that the choice of probabilistic laws of input parameters has a substantial impact on the outcome of analysis performed.

A state of review on manufacturing and effectiveness of ultra-high-performance fiber reinforced concrete for long-term integrity of concrete structures

  • Dongmei Chen;Yueshun Chen;Lu Ma;Md. Habibur Rahman Sobuz;Md. Kawsarul Islam Kabbo;Md. Munir Hayet Khan
    • Advances in concrete construction
    • /
    • v.17 no.5
    • /
    • pp.293-310
    • /
    • 2024
  • Ultra-high-performance fiber-reinforced concrete (UHPFRC) is a form of cement-based material that has a compressive strength above 150 MPa, excellent ductility, and superior durability. This composite material demonstrates innovation and has the potential to serve as a viable substitute for concrete constructions that are subjected to harsh environmental conditions. Over many decades, extensive research and progressive efforts have introduced several commercial UHPFRC compositions globally. These compositions have been specifically designed to cater to an increasing variety of applications and meet the rising need for building materials of superior quality. However, the effective manufacturing of UHPFRC relies on the composition of its materials, especially the inclusion of fiber content and the proportions in the mixture, resulting in a more compact and comparatively uniform packing of particles. UHPFRC has notable benefits in comparison to conventional concrete, yet its use is constrained by the dearth of design codes and the prohibitive expenses associated with its implementation. The study demonstrates that UHPFRC presents a viable, long-lasting option for improving sustainable construction. This is attributed to its outstanding strength properties and superior durability in resisting water and chloride ion permeability, freeze-thaw cycles, and carbonation. The analysis found that a rheology-based mixture design technique may be employed in the production of UHPFRC to provide enough flowability. The study also revealed that the use of deformed steel fibers has shown enhanced mechanical qualities in comparison to straight steel fibers. However, obstacles such as higher initial costs, the requirement for highly specialized personnel, and the absence of comprehensive literature on global UHPFRC standards that establish minimum strength criteria and testing requirements can hinder the widespread implication of UHPFRC. Finally, this review attempts to deepen our foundational conception of UHPFRC, encourages additional study and applications, and recommends an in-depth investigation of the mechanical and durability properties of UHPFRC to maximize its practicality.

Automatic Categorization of Islamic Jurisprudential Legal Questions using Hierarchical Deep Learning Text Classifier

  • AlSabban, Wesam H.;Alotaibi, Saud S.;Farag, Abdullah Tarek;Rakha, Omar Essam;Al Sallab, Ahmad A.;Alotaibi, Majid
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.9
    • /
    • pp.281-291
    • /
    • 2021
  • The Islamic jurisprudential legal system represents an essential component of the Islamic religion, that governs many aspects of Muslims' daily lives. This creates many questions that require interpretations by qualified specialists, or Muftis according to the main sources of legislation in Islam. The Islamic jurisprudence is usually classified into branches, according to which the questions can be categorized and classified. Such categorization has many applications in automated question-answering systems, and in manual systems in routing the questions to a specialized Mufti to answer specific topics. In this work we tackle the problem of automatic categorisation of Islamic jurisprudential legal questions using deep learning techniques. In this paper, we build a hierarchical deep learning model that first extracts the question text features at two levels: word and sentence representation, followed by a text classifier that acts upon the question representation. To evaluate our model, we build and release the largest publicly available dataset of Islamic questions and answers, along with their topics, for 52 topic categories. We evaluate different state-of-the art deep learning models, both for word and sentence embeddings, comparing recurrent and transformer-based techniques, and performing extensive ablation studies to show the effect of each model choice. Our hierarchical model is based on pre-trained models, taking advantage of the recent advancement of transfer learning techniques, focused on Arabic language.

On Non-Orthogonal Multiple Access (NOMA) in 5G Systems (5G 시스템에서의 비-직교 다중 액세스(NOMA))

  • Islam, SM Riazul;Kim, Jae Moung;Kwak, Kyung Sup
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.12
    • /
    • pp.2549-2558
    • /
    • 2015
  • The non-orthogonal multiple access (NOMA) is one of the fledging paradigms which next generation radio access technologies are sprouting toward. The NOMA with superposition coding (SC) in the transmitter and successive interference cancellation (SIC) at the receiver comes with many desirable features and benefits over orthogonal multiple access (OMA) such as orthogonal frequency division multiple access (OFDMA) adopted by Long-Term Evolution (LTE). In this paper, we study the recent research trends on NOMA in 5G systems. We discuss the basic concept of NOMA and explain its aspects of importance for future radio access. Then, we provide a survey of the state of the art in NOMA for 5G systems in a categorized manner. Further, we analyze the NOMA performances with numerical examples; and provide some avenues for future research on NOMA on a set of open issues and challenges.

Distinct Involvement of 9p21-24 and 13q14.1-14.3 Chromosomal Regions in Raw Betel-Nut Induced Esophageal Cancers in the State of Meghalaya, India

  • Rai, Avdhesh K.;Freddy, Allen J.;Banerjee, Atanu;Kurkalang, Sillarine;Rangad, Gordon M.;Islam, Mohammad;Nongrum, Henry B.;Dkhar, Hughbert;Chatterjee, Anupam
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.6
    • /
    • pp.2629-2633
    • /
    • 2012
  • Background: Raw betel nut (RBN) chewing is an important contributing factor for esophageal squamous cell carcinoma (ESCC), although associated genomic changes remain unclear. One difficulty in assessing the effects of exclusively RBN induced genetic alterations has been that earlier studies were performed with samples of patients commonly using tobacco and alcohol, in addition to betel-quid. Both CDKN2A (at 9p21) and Rb1 gene (at 13q14.2) are regarded as tumor suppressors involved in the development of ESCC. Therefore, the present study aimed to verify the RBN's ability to induce ESCC and assess the involvement of CDKN2A and Rb1 genes. Methods: A panel of dinucelotide polymorphic markers were chosen for loss of heterozygosity studies in 93 samples of which 34 were collected from patients with only RBN-chewing habit. Promoter hypermethylation was also investigated. Results: Loss in microsatellite markers D9S1748 and D9S1749, located close to exon $1{\beta}$ of CDKN2A/ARF gene at 9p21, was noted in 40% ESCC samples with the habit of RBN-chewing alone. Involvement of a novel site in the 9p23 region was also observed. Promoter hypermethylation of CDKN2A gene in the samples with the habit of only RBN-chewing alone was significantly higher (p=0.01) than Rb1 gene, also from the samples having the habit of use both RBN and tobacco (p=0.047). Conclusions: The data indicate that the disruption of 9p21 where CDKN2A gene resides, is the most frequent critical genetic event in RBN-associated carcinogenesis. The involvement of 9p23 as well as 13q14.2 could be required in later stages in RBN-mediated carcinogenesis.

Circulating Cell-free miRNA Expression and its Association with Clinicopathologic Features in Inflammatory and Non-Inflammatory Breast Cancer

  • Hamdi, K;Blancato, J;Goerlitz, D;Islam, MD;Neili, B;Abidi, A;Gat, A;Ayed, F Ben;Chivi, S;Loffredo, CA;Jillson, I;Elgaaied, A Benammar;Marrakchi, R
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.4
    • /
    • pp.1801-1810
    • /
    • 2016
  • Recent discovery showing the presence of microRNAs (miRNAs) in the circulation sparked interest in their use as potential biomarkers. Our previous studies showed the diagnostic potential of miR-451 as a serological marker for inflammatory breast cancer (IBC), miR-337-5p and miR-30b for non-inflammatory breast cancer (non-IBC). The aim of this study is to investigate the prognostic values of circulating miRNAs by comparing the amounts of 12 circulating miRNAs in the serum of IBC and non-IBC from Tunisian breast cancer patients, and by determinating whether correlated pairs of miRNAs could provide useful information in the diagnosis of IBC and non-IBC patients. TaqMan qPCR was performed to detect circulating expression of miRNAs in serum of 20 IBC, 20 non-IBC and 20 healthy controls. Nonparametric rank Spearman rho correlation coefficient was used to examine the prognostic value of miRNAs and to assess the correlation profile between miRNAs expression. Further, a large number of miRNAs were highly correlated (rho>0.5) in both patients groups and controls. Also, the correlations profiles were different between IBC, non-IBC and healthy controls indicating important changes in molecular pathways in cancer cells. Our results showed that miR-335 was significantly overexpressed in premenopausal non-IBC patients; miR-24 was significantly overexpressed in non-IBC postmenopausal patients. Patients with previous parity had higher serum of miR-342-5p levels than those without. Furthermore, patients with HER2+ IBC present lower serum levels of miR-15a than patients with HER2-disease. Together, these results underline the potential of miRNAs to function as diagnostic and prognostic markers for IBC and non-IBC, with links to the menopausal state, Her2 status and parity.