• Title/Summary/Keyword: the Earth Science

Search Result 6,515, Processing Time 0.471 seconds

Analysis of Unrest Signs of Activity at the Baegdusan Volcano (백두산 화산의 전조활동 분석 연구)

  • Yun, Sung-Hyo;Lee, Jeong-Hyun
    • The Journal of the Petrological Society of Korea
    • /
    • v.21 no.1
    • /
    • pp.1-12
    • /
    • 2012
  • The Baegdusan volcano is one of the most active volcanoes in northeastern Asia, and the 10th century eruption was the most voluminous eruption in the world in recent 2,000 years. During the period from 2002 to 2005, volcanic earthquakes and abnormal surface distortions by suspected subsurface magma intrusion beneath the volcano were observed in the Baegdusan area. Seismic activity has gradually increased with earthquake swarms during 2002-2003 and hundreds of seismic event in a day, especially annual peak of 2,100 in 2003. Then the number of seismic activity has declined since 2006 to the background level in 1999-2001. According to the typical frequency of volcanic earthquakes in the Baegdusan volcano, the frequency distribution of typical volcanic earthquakes between 2002 and 2005 indicates that all the main frequency of the earthquakes basically falls down less than 5 Hz and 5-10 Hz. These events are all the VT-B and LP events caused by the shallow localized fracture and intrusion of magma. The horizontal displacement measurement by GPS during the period from 2000 to 2007 of the Baegdusan stratovolcano area indicates that an inflated process has been centered at the summit caldera since 2002. The displacement between 2002 and 2003 reached at a maximum value of 4 cm. After 2003, the deformation rate of the volcano continued to decrease with unusual variation during the period from 2006 to 2007. After 2003 the vertical displacement uplift rate falls down gradually but still keeps in an uplift trend in northern slope. It is generally believed that when $^3He/^4He(R)$ in a gas sample from a hot spring exceeds $^3He/^4He(R)$ in the atmosphere, it can be concluded that mantle-source. And temperatures of hot springs are rising steadily to $83^{\circ}C$. It is unrest signals at the Baegdusan, which is potentially active. The Baegdusan volcano is now in unrest status, there is eruption threat in the near future. Intensified monitoring and emergency response plan for volcanic risk mitigation are urgent for the volcano.

The Myth of the Samsunghyeol through Communication Mathematic - Historical Analysis of The Goyangbu 3 (고양부 3을나의 3의 통신수학-역사적 분석을 통한 3성혈 신화 해석)

  • Lee, Seong kook;Lee, Moon Ho;Kim, Jeong Su
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.3
    • /
    • pp.581-587
    • /
    • 2022
  • The water god, Venerable Bhadra, Indian Tammola (Tamla as the 'mol' and 'ju' characters were eliminated) came to Tamla with 900 Arahants(The highest Buddhist monks) around 563-483 BC. It is the propagation of Buddhism through the world's most sacred water (Heiligkeit). The traces of the three surnames of Goyangbu are the first samsunghyeol and the dwelling of the den of Jonjaam(cave of venerable Bhadra) in Yeongsil, giving a glimpse into the era of living in caves. The second is a link that is in line with 3, the basic number in the decomposition of 900 (=3*3*100) disciples of Bhadra, considering that 3 and 3 of the three surnames in Goyangbu are three times 9. At this time, 3 is the person of heaven and earth, religiously, marriage, hope, or complete number, and Jeju culture is resting everywhere. For example, 3 of the samsunghyeol, 3 of the 1, 2, 3 Dodong, 3 of the 3 Dado, 3 of the 3 Mudo, 3 of the 3 disasters, 3 of the Goyangbu 3-surnames, 3 of the house Olle Jeongnang and, among 900 (=3*3*100) disciples of Venerable Bhadra, the common factor is 3. It is the 'island of 3'. These papers consist of 1 and 2 parts. In Part 1, the name of Tamla came from Tammola, India, and 900 Indian Buddhist Arahants estimated that the three surnames in Goyangbu were the ancestors. Part 2 highlights how the basic principle of jeonganag derived from Indian customs has evolved and is being used in modern mobile communication and DNA gene life science.

Sedimentary Facies and Evolution of the Cretaceous Deep-Sea Channel System in Magallanes Basin, Southern Chile (마젤란 분지의 백악기 심해저 하도 퇴적계의 퇴적상 및 진화)

  • Choe, Moon-Young;Sohn, Young-Kwan;Jo, Hyung-Rae;Kim, Yea-Dong
    • Ocean and Polar Research
    • /
    • v.26 no.3
    • /
    • pp.385-400
    • /
    • 2004
  • The Lago Sofia Conglomerate encased in the 2km thick hemipelagic mudstones and thinbedded turbidites of the Cretaceous Cerro Toro Formation, southern Chile, is a deposit of a gigantic submarine channel developed along a foredeep trough. It is hundreds of meters thick kilometers wide, and extends for more than 120km from north to south, representing one of the largest ancient submarine channels in the world. The channel deposits consist of four major facies, including stratified conglomerates (Facies A), massive or graded conglomerates (Facies B), normally graded conglomerates with intraformational megaclasts (Facies C), and thick-bedded massive sandstones (Facies D). Conglomerates of Facies A and B show laterally inclined stratification, foreset stratification, and hollow-fill structures, reminiscent of terrestrial fluvial deposits and are suggestive of highly competent gravelly turbidity currents. Facies C conglomerates are interpreted as deposits of composite or multiphase debris flows associated with preceding hyperconcentrated flows. Facies D sandstones indicate rapidly dissipating, sand-rich turbidity currents. The Lago Sofia Conglomerate occurs as isolated channel-fill bodies in the northern part of the study area, generally less than 100m thick, composed mainly of Facies C conglomerates and intercalated between much thicker fine-grained deposits. Paleocurrent data indicate sediment transport to the east and southeast. They are interpreted to represent tributaries of a larger submarine channel system, which joined to form a trunk channel to the south. The conglomerate in the southern part is more than 300 m thick, composed of subequal proportions of Facies A, B, and C conglomerates, and overlain by hundreds of m-thick turbidite sandstones (Facies D) with scarce intervening fine-grained deposits. It is interpreted as vertically stacked and interconnected channel bodies formed by a trunk channel confined along the axis of the foredeep trough. The channel bodies in the southern part are classified into 5 architectural elements on the basis of large-scale bed geometry and sedimentary facies: (1) stacked sheets, indicative of bedload deposition by turbidity currents and typical of broad gravel bars in terrestrial gravelly braided rivers, (2) laterally-inclined strata, suggestive of lateral accretion with respect to paleocurrent direction and related to spiral flows in curved channel segments around bars, (3) foreset strata, interpreted as the deposits of targe gravel dunes that have migrated downstream under quasi-steady turbidity currents, (4) hollow fills, which are filling thalwegs, minor channels, and local scours, and (5) mass-flow deposits of Facies C. The stacked sheets, laterally inclined strata, and hollow fills are laterally transitional to one another, reflecting juxtaposed geomorphic units of deep-sea channel systems. It is noticeable that the channel bodies in the southern part are of feet stacked toward the east, indicating eastward migration of the channel thalwegs. The laterally inclined strata also dip dominantly to the east. These features suggest that the trunk channel of the Lago Sofia submarine channel system gradually migrated eastward. The eastward channel migration is Interpreted to be due to tectonic forcing imposed by the subduction of an oceanic plate beneath the Andean Cordillera just to the west of the Lago Sofia submarine channel.

Distribution and Petrology of the Columnar Joint in South Korea (남한에서 주상절리의 분포와 암석학적 특성)

  • Ahn, Kun Sang
    • The Journal of the Petrological Society of Korea
    • /
    • v.23 no.2
    • /
    • pp.45-59
    • /
    • 2014
  • This study has been designed to collate distribution, morphology, petrology of columnar joint in South Korea. Reported columnar joint areas in South Korea are 68, until the present time. These can be divided into five group by geography and volcanic activity. 1) The 16 columnar joint areas are distributed in Hantangang region. The 15 areas in this region are composed of basaltic lava in the Quaternary period, and the other 1 area is composed of volcanic rocks in the Cretaceous period. 2) The 18 columnar joint areas are distributed in Jeju island. Most of them are composed of basaltic lava(alkali basalt and Hawaiite), and the Sanbangsan and Baegrokdam area are composed of trachyte in the Quaternary period. Colonnade, entablature and chisel mark of the columnar joint are typically occur in basaltic lava. 3) The 5 columnar joint areas are distributed into the Ulleung island and Dokdo including Guksubawi. These are consisted of relatively well-formed trachyte columns in the Quaternary period. 4) The 8 columnar joint areas are distributed into the Pohang, Gyeongju and Ulsan region and consist of the Tertiary period volcanic rock. It's shape are dome, radial, horizontal and vertical. The 4 columnar joint areas are reported in the Pyeongtaek and Asan city of Chungcheongnamdo and Gosung of Gangwondo. All of them are the Tertiary period basalt. 5) The 15 columnar joint areas are distributed into the west and south coast region. Those are consisted of various rock type(from basalt to dacite), various occurrences(lava flow to welded tuff), and various diameters(20 cm to several meters). The columnar joint of Mudeung mountain and Juwang mountain are welded tuff in the Cretaceous period. The columnar joint is distributed over a wide area in South Korea, 5 in Gangwondo, 13 in Gyeonggido, 2 in Chungnam, 14 in Gyeongbuk, 1 in Jeonbuk, 10 in Jeonnam, 5 in Gyeongnam, and 18 in Jeju. The columnar joints in South Korea can be arranged in order of formative period, 18 in the Cretaceous period, 12 in the Tertiary period, and 38 in the Quaternary period. By magma series, 36 are belong to alkaline series and 32 are belong to sub-alkaline series.

BREEDING OF THE PUFFER FUGU RUBRIPES (자주복 Fugu rubripes (Temminck et Schlegel)의 종묘 생산에 관한 연구)

  • PYEN Choong-Byu;RHO Bum
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.3 no.1
    • /
    • pp.52-64
    • /
    • 1970
  • Fingerlings hatched from the eggs of the puffer, Fugu rubripes, which were spawned on May 21, 1969, and were cultivated. The results of their growth during 150 days, until October 25th, are summarized as follows: 1. The eggs began to hatch after 163 hours, at a water temperature of 15.9 to $17.4^{\circ}C$, and the hatching rate was $61.56\%$. 2. They reached the post-larval stage 6 to 7 days after hatching, and at this time a high mortality occurred. The mortality rate was 57.26 to $68.0\%$. 3. Sixteen days after hatching some of the larger fingerlings (6.7mm in total length) began attacking some of the smaller ones (4.6mm in to total length). 4. Twenty five to twenty eight days after hatching, the fish changed their food, and at this time a second high mortality occured. The total mortality rate amounted to 90.7 to $90.9\%$ of the total hatch. 5. After the fingerling stage. cannibalism occurs. The fish usually attack the caudal part of other fingerlings. It occurs regardless of body length and when the food supply is short. 6. The food coeffiicient at the age of 46 days (when body length is 53 to 68 mm) was 5.5 for short-necked clams, 8.5 for earth-worms, and 8.7 for fishes. 7. A third hish mortality occurred 53 to 63 days after hatching, the total mortality amounting to 95.76 to $97.34\%$, and the main cause of the mortality was found to be rickets resulting from nutritional deficiency 8. The growth rates were as follows: 2.68mm just after hatching, 3.84mm at the age of 10 days; 7.96mm after 25 days; 20.96mm or 130mg after 40 days; 73.68mm or 9.06g after 80 days: and 123mm or 31.8g after 150 days. 9. The water temperature during the above period was 15.7 to $28.4^{\circ}C$ with an average of $22.10^{\circ}C$ and the salinity was 25.53 to $34.50\%$ with an average of $32.07\%$, 10. The young of this species could endure well a wide range and sudden rise in salinity, and could survive easily when the salinity suddenly fell to $5\%$, but a considerable mortality occured when it fell to $3\%$. 11. When the fish were tranferred directly to fresh water from normal sea water they died out in 9 hours and 40minutes. However, when transferred from water of $5\%$ salinity at which they were reared for 54 days, they survived for 60 hours and 40 mimutes longer than in the former case.

  • PDF

Distribution Patterns of Surface Sediments of the Jangan Linear Sand Ridge off the Northern Taean Peninsula, in the Mid-west Coast of Korea (서해 중부 태안반도 북부 해역의 장안사퇴 표층퇴적물 분포 특성)

  • TAE SOO CHANG;EUNIL LEE;DO-SEONG BYUN;HWAYOUNG LEE;SEUNG-GYUN BAEK
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.29 no.1
    • /
    • pp.14-27
    • /
    • 2024
  • Unlike the shelf sand ridges moribund in motion, nearshore sand ridges are highly mobile, sensitive to changes in ocean environments, thereby becoming of particular interest with respect to morphological changes. About 5 km off the Daesan port, the Jangan Sand Ridge has been undergoing severe subsea morphological change over the past two decades. Understanding the nature of sand ridges is critical to elucidate the causes of morphological changes. In this context, this study aims at understanding the characteristics and distribution patterns of surface sediments of the ridge and its vicinity. For this purpose, 227 sediment samples were acquired using a grab-sampler, the grain sizes being analysed by the sieve-pipette method. In addition, comparison of grain sizes in sediments between 1997 and 2021 was made in order to investigate the 25-years change in sediment composition. Surface sediments along the ridge axis are fine to medium sands with 2-3 phi in mean grain size, whereas, in the trough of ridge, the sediments are composed of gravels and muddy sandy gravels with mean sizes of -2 to -6 phi. Sediments in the crest of the ridge are well-sorted with normal distribution, on the other hand, the basal sediments are poorly-sorted and positively skewed. Along the ridge crest, the sediments are negatively skewed. From 1997 to 2021, the ridge sediments became largely coarser about 0.5 phi. Such coarsening trend in mean grain size can be explained either by elimination of fine sediments during high waves in winter or elimination of fines suspended during sand mining activities in the past. Spatial distribution pattern of surface sediments shows that ca. 30 m thick of the sand ridge itself overlies the thin relict gravels. The strong asymmetry of sand ridge, the exposure of ridge base, and reworked gravel lags suggest that Jangan sand ridge is probably sediment-deficit and hence erosive in nature at present.

Structure and Variation of Tidal Flat Temperature in Gomso Bay, West Coast of Korea (서해안 곰소만 갯벌 온도의 구조 및 변화)

  • Lee, Sang-Ho;Cho, Yang-Ki;You, Kwang-Woo;Kim, Young-Gon;Choi, Hyun-Yong
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.10 no.1
    • /
    • pp.100-112
    • /
    • 2005
  • Soil temperature was measured from the surface to 40 cm depth at three stations with different heights in tidal flat of Gomso Bay, west coast of Korea, for one month in every season 2004 to examine the thermal structure and the variation. Mean temperature in surface layer was higher in summer and lower in winter than in lower layer, reflecting the seasonal variation of vertically propagating structure of temperature by heating and cooling from the tidal flat surface. Standard deviation of temperature decreased from the surface to lower layer. Periodic variations of solar radiation energy and tide mainly caused short term variation of soil temperature, which was also intermittently influenced by precipitation and wind. Time series analysis showed the power spectral energy peaks at the periods of 24, 12 and 8 hours, and the strongest peak appeared at 24 hour period. These peaks can be interpreted as temperature waves forced by variations of solar radiation, diurnal tide and interaction of both variations, respectively. EOF analysis showed that the first and the second modes resolved 96% of variation of vertical temperature structure. The first mode was interpreted as the heating antl cooling from tidal flat surface and the second mode as the effect of phase lag produced by temperature wave propagation in the soil. The phase of heat transfer by 24 hour period wave, analyzed by cross spectrum, showed that mean phase difference of the temperature wave increased almost linearly with the soil depth. The time lags by the phase difference from surface to 10, 20 and 40cm were 3.2,6.5 and 9.8 hours, respectively. Vertical thermal diffusivity of temperature wave of 24 hour period was estimated using one dimensional thermal diffusion model. Average diffusivity over the soil depths and seasons resulted in $0.70{\times}10^{-6}m^2/s$ at the middle station and $0.57{\times}10^{-6}m^2/s$ at the lowest station. The depth-averaged diffusivity was large in spring and small in summer and the seasonal mean diffusivity vertically increased from 2 cm to 10 cm and decreased from 10 cm to 40 cm. Thermal propagation speeds were estimated by $8.75{\times}10^{-4}cm/s,\;3.8{\times}10{-4}cm/s,\;and\;1.7{\times}10^{-4}cm/s$ from 2 cm to 10 cm, 20 cm and 40 cm, respectively, indicating the speed reduction with depth increasing from the surface.

Regeneration Processes of Nutrients in the Polar Front Area of the East Sea 1. Relationships between Water Mass and Nutrient Distribution Pattern in Autumn (동해 극전선역의 영양염류 순환과정 1. 추계 수괴와 영양염 분포와의 관계)

  • Moon Chang-Ho;YANG Han-Soeb;LEE Kwang Woo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.29 no.4
    • /
    • pp.503-526
    • /
    • 1996
  • A synoptic survery of chemical characteristics in the last Sea of Korea was carried out at the 11 stations near Ullungdo in November, 1994 on board R/V Tam-Yang. On the basis of the vortical distribution patterns of temperature, salinity and dissolved oxygen, water masses in the study area are divided into five groups; 1) Tsushima Surface Water (TSW), 2) Tsushima Middle Water (TMW), 3) East Sea Intermediate Water (ESIW), 4) last Sea Proper Water (ESPW), 5) Mixed Water (MW). In the vertical profiles of nutrients, the concentrations were very low in the surface layer and increased rapidly near the thermocline. There was a slight decrease in the ESIW and the concentrations were constant with the depth below 300m except dissolved silicate which still increased with depth. Relatively high value of Si/P ratio (25.2) in ESPW, whick is the oldest water mass, suggests that Si is regenerating more slowly compared to other nutrients. The relatively high value of N/P ratio (18.6) in the surface layer might be related to high vertical eddy diffusivity $(K_z)$ of $1.19\;cm^{2}/sec$ and high nitrate upward flux of $103.7\;{\mu}g-at/m^{2}/hr$, compared to the values reported in other areas. Apparent Oxygen Utilization (AOU) was very low in the surface layer and increased in the TMW, but there was a slight decrease in the ESIW. The highest value of AOU occurred in the ESPW. The slpoe of P/AOU was 0.50. The study on the relationship between water masses and nutrient distribution patterns is important in understanding the regeneration processes of nutrients in the polar region of the last Sea.

  • PDF

Study of Volcanic Gases and Hot Spring Water to Evaluate the Volcanic Activity of Mt. Baekdu (백두산 화산활동 평가를 위한 화산가스 및 온천수에 대한 연구)

  • Lee, Sangchul;Yun, Sung-Hyo
    • Economic and Environmental Geology
    • /
    • v.50 no.2
    • /
    • pp.171-180
    • /
    • 2017
  • This study performed the analysis on the volcanic gases and hot spring waters from the Julong hot spring at Mt. Baekdu during the period from July 2015 to August 2016. Also, we confirmed the errors that $HCO_3{^-}$ concentrations of hot spring waters in the previous study (Lee et al. 2014) and tried to improve the problem. Dissolved $CO_2$ in hot spring waters was analyzed using gas chromatograph in Lee et al. (2014). Improving this, from 2015, we used TOC-IC to analysis dissolved $CO_2$. Also, we analyzed the $Na_2CO_3$ standard solutions of different concentrations using GC, and confirmed the correlation between the analytical concentrations and the real concentrations. However, because the analytical results of Julong hot spring water were in discord with the estimated values based on this correlation, we can't estimate the $HCO_3{^-}$ concentrations of 2014 samples. During the period of study, $CO_2/CH_4$ in volcanic gases are gradually decreased, and this can be interpreted in two different ways. The first interpretation is that the conditions inside the volcanic edifice are changing into more reduction conditions, and carbon in volcanic gases become more favorable to distribute into $CH_4$ or CO than $CO_2$. The second interpretation is that the interaction between volcanic gases and water becomes greater than past, and the concentrations of $CO_2$ which have much higher solubility in water decreased, relatively. In general, the effect of scrubbing of volcanic gas is strengthened during the quiet periods of volcanic activity rather than active periods. Meanwhile, the analysis of hot spring waters was done on the anion of acidic gases species, the major cation, and some trace elements (As, Cd, Re).

Korean Ocean Forecasting System: Present and Future (한국의 해양예측, 오늘과 내일)

  • Kim, Young Ho;Choi, Byoung-Ju;Lee, Jun-Soo;Byun, Do-Seong;Kang, Kiryong;Kim, Young-Gyu;Cho, Yang-Ki
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.18 no.2
    • /
    • pp.89-103
    • /
    • 2013
  • National demands for the ocean forecasting system have been increased to support economic activity and national safety including search and rescue, maritime defense, fisheries, port management, leisure activities and marine transportation. Further, the ocean forecasting has been regarded as one of the key components to improve the weather and climate forecasting. Due to the national demands as well as improvement of the technology, the ocean forecasting systems have been established among advanced countries since late 1990. Global Ocean Data Assimilation Experiment (GODAE) significantly contributed to the achievement and world-wide spreading of ocean forecasting systems. Four stages of GODAE were summarized. Goal, vision, development history and research on ocean forecasting system of the advanced countries such as USA, France, UK, Italy, Norway, Australia, Japan, China, who operationally use the systems, were examined and compared. Strategies of the successfully established ocean forecasting systems can be summarized as follows: First, concentration of the national ability is required to establish successful operational ocean forecasting system. Second, newly developed technologies were shared with other countries and they achieved mutual and cooperative development through the international program. Third, each participating organization has devoted to its own task according to its role. In Korean society, demands on the ocean forecasting system have been also extended. Present status on development of the ocean forecasting system and long-term plan of KMA (Korea Meteorological Administration), KHOA (Korea Hydrographic and Oceanographic Administration), NFRDI (National Fisheries Research & Development Institute), ADD (Agency for Defense Development) were surveyed. From the history of the pre-established systems in other countries, the cooperation among the relevant Korean organizations is essential to establish the accurate and successful ocean forecasting system, and they can form a consortium. Through the cooperation, we can (1) set up high-quality ocean forecasting models and systems, (2) efficiently invest and distribute financial resources without duplicate investment, (3) overcome lack of manpower for the development. At present stage, it is strongly requested to concentrate national resources on developing a large-scale operational Korea Ocean Forecasting System which can produce open boundary and initial conditions for local ocean and climate forecasting models. Once the system is established, each organization can modify the system for its own specialized purpose. In addition, we can contribute to the international ocean prediction community.