• Title/Summary/Keyword: the Earth Science

Search Result 6,499, Processing Time 0.032 seconds

Exploring Criteria of Evaluation of Climate Change Models by Preservice Earth Science Teachers (예비 지구과학교사들의 기후변화 모델 평가 기준 탐색)

  • Ha, Yoon-hee;Cha, Hyun-jung;Shin, Hyeonjeong;Kim, Chan-jong
    • Journal of the Korean earth science society
    • /
    • v.43 no.1
    • /
    • pp.210-223
    • /
    • 2022
  • This study explores the criteria of climate change model evaluation by preservice Earth science teachers. The participants in this study were 25 preservice Earth science teachers who attended lectures on modeling-based science learning for 3 weeks in an Earth science education major course. The evaluation criteria of climate change models were categorized inductively using reports written by preservice Earth science teachers and post-interviews. The results showed that preservice Earth science teachers used various epistemic and communicative criteria to evaluate climate change models. Implications for modeling-based climate-change learning were suggested based on these results.

Comparing the Formats and Content of the State Science Content Standards of Six States in U. S. with Emphasis on Earth Science

  • Kim Chan-Jong;Lee Sun-Kyung;Hwang Eunjee
    • Journal of the Korean earth science society
    • /
    • v.26 no.4
    • /
    • pp.336-346
    • /
    • 2005
  • This study identifies and compares science content standards that are approved by departments of education in six states: California, Connecticut, Michigan, New Jersey, Texas, and Virginia. Specifically, the study examines the goals/visions, the organizing/progression principles, the strands of science content, and earth science content found in the states curriculum standards compared to National Science Education Standards. Although many states followed the recommendations of NSES or Project 2061, the format and content of the state science standards reviewed are very diverse. The diversity seems to reflect the diverse perspectives and needs of the states. The results of this study provide Korean educators and teachers with useful models or examples to incorporate Korean national science curriculum guides into the science curriculum frameworks of their regions or schools.

A Modified H-R Diagram Activity to Introduce the Nature of Science

  • Lee, Eun-Ah
    • Journal of the Korean earth science society
    • /
    • v.26 no.4
    • /
    • pp.329-335
    • /
    • 2005
  • The purpose of this study is to suggest the modification of activities to introduce the nature of science in earth science classrooms. A small modification can turn ordinary textbook activities into the nature of science activities. Since earth science could provide a good basis for the tentative, creative, and socially and culturally embedded nature of science, as well as appropriate understanding about scientific methods, careful modification of earth science activities could be effective for students to understand the nature of science. Considering which aspects of the nature of science are appropriate, along with the possible change in the activity, teachers will be able to modify textbook activities effectively. An example modification of H-R diagram activity was also suggested.

Earth Science in the Perspectives of Environmental Education (지구과학과 환경 교육)

  • Shin, Dong-Hee
    • Journal of the Korean earth science society
    • /
    • v.22 no.2
    • /
    • pp.147-158
    • /
    • 2001
  • Recently, with the increase of environmental problems, the importance of environmental education has also been emphasized. Science is a subject that enormously contributes to education about the environment, education in the environment, and education for the environment. Among various fields of science, earth science has a large amount of contents related environmental education, from the perspectives that the subjects of earth science are natural and artificial changes in the earth surface. Accordingly, it is clear that earth science education can play an important role in environmental education. This is proved in the fact that the goal and specifics of earth systems education coincidence with those of environmental education. Earth science curriculum in Korea, however, contains few contents related to environmental education. Earth science education that concerns our environment as a whole will help not only catch a new interest on the field of earth science but actively participate in solving our environmental problems.

  • PDF

Developing a Framework of Conceptual Understandings of Earth Systems

  • Nam, Younkyeong
    • Journal of the Korean earth science society
    • /
    • v.37 no.5
    • /
    • pp.309-322
    • /
    • 2016
  • This paper presents an analytical framework of Conceptual Understandings of Earth Systems (CUES) that shows a relationship between disciplinary knowledge of Earth systems and the specific thinking skills required to understand that knowledge. This framework is developed through an extensive literature review of students' and teachers' understandings of earth systems concepts and systems thinking in earth science context. This study first presents the categories of disciplinary knowledge of Earth systems, Earth System Knowledge (ESK). This study then illustrates a relationship between categories of ESK and the ontological categories (Matter, Process, Systems) that has been used to study students' conceptual understandings of Earth systems. Finally, this study presents the CUES framework to show the relationship between disciplinary knowledge and thinking skills. The implications of using this framework for curriculum development, assessment, and teacher education and ESS research are discussed.

Reasoning-Based Inquriy Model Embedded in Earth Science Phenomena (지구과학적 현상의 특성을 고려한 추론 중심 탐구수업 모형 제안)

  • Lee, Gyu-Ho;Kwon, Byung-Doo
    • Journal of the Korean earth science society
    • /
    • v.31 no.2
    • /
    • pp.185-204
    • /
    • 2010
  • Inquiring earth science phenomena is characterized by the followings: a big scale of time and space, inaccessibility, uncontrollability, and complexity. Thus, it is very difficult or, in some cases, impossible to investigate them through the actual manipulation in laboratories. Therefore, it is necessary to provide chance for students to experience scientific inquiry without actual manipulation in earth science classes. This study is to explore the role of reasoning based on a thought experiment as a representative model without actual manipulation, and to investigate features of various inquiry models using reasoning in classes. We can make implications when applying for applying each inquiry model to earth science classes, proposing a reasoning-based inquiry model embedded in earth scientific phenomena.

The Impact of Self-Reported Knowledge and Self-perceived Importance about Earth Systems on Science Gifted Students' Science Motivation: An Exploratory Study (과학 영재 학생의 지구계에 대한 지식과 중요성이 과학 동기에 미치는 영향: 탐색적 연구)

  • Oh, Jun-Young;Lee, Hyundong;Lee, Hyonyong
    • Journal of the Korean earth science society
    • /
    • v.36 no.6
    • /
    • pp.580-590
    • /
    • 2015
  • The purpose of this study was to investigate the correlation among science gifted students' self-reported knowledge and self-perceived importance about Earth systems, and their science motivation. Ninety three seventh graders participated in this study who enrolled at Science Gifted Institute of K university. The correlation was measured by a validated Earth systems survey and Science Motivation Questionnaire (SMQ). The data were analyzed at the margin of error probability 0.05 using correlation and regression analysis. The result of reliability for items turned out high because the Cronbach's alphas were .896~.937. Results indicated that the correlation between self-reported knowledge on Earth systems and science motivation showed a correlation coefficient .656, whereas the correlation between importance on Earth systems and science motivation was .387, which was regarded as low. On the other hands, the result of regression analysis depicted that non-std. coefficients between students' self-reported knowledge about Earth systems and science motivation were .548 (.077), which lead to the conclusion that students' knowledge on Earth systems explained 43% of science motive-variation. It implied that Earth systems education program could impact the increased motivation of science gifted-students. Therefore, this study suggests that the various Earth systems education programs could be developed and implemented in order to increase students' motivation on studying science in general and Earth science in specific.

An Analysis on High School Students' Perceptions of Earth Science Scientists (지구과학자에 대한 고등학생들의 인식 분석)

  • Kim, Yun-Ji
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.7 no.2
    • /
    • pp.159-168
    • /
    • 2014
  • This study was designed to 10 questions as development of GAP program for ninety high school students(each student of 30 with achievement as high, medium, and low categories), it was analyzed the perception of Earth scientist. High school students have a positive perception about a course in Earth science, but they have lack of knowledge about Earth scientist as a career man, and they can't recognize Earth scientist as a career. A failure of learning of Earth science for Students with low level achievement leads to a negative perception about Earth scientist and disconnection to future career. School education should provide an opportunity to encounter Earth scientist for students and it is badly in need of effort to connect to the job training program.