• Title/Summary/Keyword: the $5^{th}$ National Forest Inventory

Search Result 42, Processing Time 0.021 seconds

Forest Resources of the Korea Based on National Forest Inventory Data

  • Kim, Dong-Hyuk;Nor, Dae-Kyun;Jeong, Jin-Hyun;Kim, Sung-Ho;Chung, Dong-Jun
    • Journal of Forest and Environmental Science
    • /
    • v.24 no.3
    • /
    • pp.159-164
    • /
    • 2008
  • Forest inventory is a commercial term meaning the preparation of detailed descriptive list of articles with number, quantity and value of each item included. Forest inventory deals with the measurement of trees and stands, the estimation of their volume, growth prediction, biomass, carbon stocks and the description tree characteristics, as well as the land upon which they are growing. National Forest Inventory Center (NFIC) in Korea conducts national forest inventory every 5 years to obtain accurate baseline data for national forest policy. The permanent sample plot data used in were collected by NFI. The objective of this study was to develop methods for quantifying forest resources at national scale based on $5^{th}$ National Forest Inventory (NFI) data in Korea. Forest land area decreased from 6.44 to 6.38 million ha between 1997 and 2007, continuing a slight downward trend in area beginning in the late 1990s. However forest resources of the Korea have continued improving in general condition and quality, as measured by increased average size and volume of trees. Growing-stock volume of the Korea increased from 17 to 123.79 cubic meter per ha between 1976 and 2007. The biomass in Korea was estimated to be 153.81 tons per hectare and carbon stocks in Korea was estimated to be 84.36 tons per hectare by NFI data. This information is important for government officials, public administration, the private business sector, and the researcher. Forest Inventory should be implemented in a way to be able to monitor and assess the forests continuously.

  • PDF

Estimation of the Forest Stand Volumes from Forest Inventory Data Based on Synthetic Estimation Method: A Case of the Economic Forest in Gangwon-do, Republic of Korea

  • Seo, Hwan seok;Park, Jeong mook;Lee, Jung soo
    • Journal of Forest and Environmental Science
    • /
    • v.32 no.2
    • /
    • pp.140-148
    • /
    • 2016
  • This study aims to estimate the forest volumes of the economic forest in Gangwon Province of Republic of Korea (hereinafter referred to as Gangwon) through the synthetic estimation. To estimate the forest volume, Stratified systematic sampling method was used along with the forest type maps and the $5^{th}$ National Forest Inventory data. The synthetic estimation includes sample plots of the expanded areas as well as those of the target area, and the forest volume of economic forest in every city and county throughout Gangwon. Results show that the average forest volume calculated by synthetic estimation was $159.6m^3/ha$ in national economic forest and $129.6m^3/ha$ in private economic forest. The total forest volume of the national economic forest was approximately $59.45million\;m^3$, which was $20.18million\;m^3$ higher than that of the private economic forest. On the other hands, the standard error of the national economic forest was approximately ${\pm}2.21m^3/ha$, which was ${\pm}0.30m^3/ha$ lower than that of the private economic forest. The lowest standard errors was about ${\pm}3.12 m^3/ha$ in broad-leaved forest, followed by ${\pm}4.33m^3/ha$ of mixed forest, and ${\pm}5.78m^3/ha$ of coniferous forest.

Analysis of Difference in Growing Stock Volume Estimates by the Changes of Cluster Plot Design and Volume Equation (표본점 설계방법과 적용 단목재적식 변경에 따른 임목축적 차이의 구명)

  • Han, Won-Sung;Kim, Sung-Ho;Kim, Chong-Chan;Shin, Man-Yong
    • Journal of Korean Society of Forest Science
    • /
    • v.99 no.3
    • /
    • pp.304-311
    • /
    • 2010
  • Korea National Forest Inventory System has been adopting different cluster plot design and new equations to estimate growing stock volumes since 2006. These changes have resulted in volume estimations which show some difference from previous ones. This study is to find out the source of such difference. For this, relevant data was collected from 80 plots of 20 cluster samples according to the cluster plot design applied to 4th and 5th National Forest Inventory. Then growing stock volumes were estimated by using current and previous individual tree volume equations respectively. An investigation was made to detect whether such difference in volume estimates was originated from the changes in cluster plot design or from using different volume equations. T-test results showed that the difference from changes in cluster plot design was negligible. Instead, changes in volume equations had statistically significant effects in volume estimation. Since the volume estimation by the 5th National Forest Inventory would bring overestimation by applying different volume equations, all the volume estimations made prior to 2006 would require necessary modifications for international reporting.

Estimation of Forest Growing Stock by Combining Annual Forest Inventory Data (연년 산림자원조사 자료를 이용한 임목축적 추정)

  • Yim, Jong Su;Jung, Il Bin;Kim, Jong Chan;Kim, Sung Ho;Ryu, Joo Hyung;Shin, Man Yong
    • Journal of Korean Society of Forest Science
    • /
    • v.101 no.2
    • /
    • pp.213-219
    • /
    • 2012
  • The $5^{th}$ national forest inventory (NFI5) has been reorganized to annual inventory system for providing multi-resources forest statistics at a point in time. The objective of this study is to evaluate statistical estimators for estimating forest growing stock in Chungcheongbuk-Do from annual inventory data. When comparing two estimators; simple random sampling (SRS) and double sampling for post-stratification (DSS), for estimating mean forest growing stock ($m^3/ha$) at each surveyed year, the estimate for DSS in which a population of interest is stratified into three sub-population (forest cover types) was more precise than that for SRS. To combine annual inventory field data, three estimators (Temporally Indifferent Method; TIM, Moving Average; MA, and Weighted Moving Average; WMA) were compared. Even though the estimated mean for TIM and WMA is identical, WMA-DSS is preferred to provide more smaller variance of estimated mean and to adjust for catastrophic events at a surveyed year (so-called "lag bias") by annual inventory data.

Changes in Carbon Stocks of Coarse Woody Debris in National Forest Inventories: Focus on Gangwon Province (국가산림자원조사 자료를 활용한 고사목의 탄소저장량 변화: 강원도를 대상으로)

  • Moon, Ga Hyun;Yim, Jong Su
    • Journal of Korean Society of Forest Science
    • /
    • v.110 no.2
    • /
    • pp.233-243
    • /
    • 2021
  • Considering worldwide efforts to mitigate repercussions of climate change, the South Korean government has declared to reach net zero by 2050 to achieve a carbon-neutral sustainable society. For full implementation of NDCs, the government has actively reflected its forestry sector into these strategies. Since coarse woody debris (CWD) in forests represents an enduring carbon storage, it is of particular significance to determine characteristics of changes in carbon stocks of CWD by utilizing data on dead trees monitored in permanent sample plots within national forest inventories (NFIs). In this study, therefore, both occurrence and carbon stocks of CWD were estimated in such plots using data on CWD from the 5th, 6th, and 7th NFIs. Subsequently, characteristics of changes in carbon stocks over time were analyzed. Based on the analysis of 2,021 plots available for monitoring in each NFI of Gangwon Province, the volume of CWD (m3 ha-1) was found to be 4.71 in the 5th NFI and 4.09 in the 6th NFI. However, the volume of CWD declined to 3.09 in the 7th NFI. Moreover, the annual carbon stocks of CWD (ton C ha-1) were estimated to be 0.67 in 2009, 0.64 in 2014, and 0.41 in 2019, showing a downward trend over time. This study provides a basis for future research to investigate long-term changes and estimate carbon stocks of CWD in South Korea forests.

Estimation of Forest Biomass based upon Satellite Data and National Forest Inventory Data (위성영상자료 및 국가 산림자원조사 자료를 이용한 산림 바이오매스 추정)

  • Yim, Jong-Su;Han, Won-Sung;Hwang, Joo-Ho;Chung, Sang-Young;Cho, Hyun-Kook;Shin, Man-Yong
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.4
    • /
    • pp.311-320
    • /
    • 2009
  • This study was carried out to estimate forest biomass and to produce forest biomass thematic map for Muju county by combining field data from the 5$^{th}$ National Forest Inventory (2006-2007) and satellite data. For estimating forest biomass, two methods were examined using a Landsat TM-5(taken on April 28th, 2005) and field data: multi-variant regression modeling and t-Nearest Neighbor (k-NN) technique. Estimates of forest biomass by the two methods were compared by a cross-validation technique. The results showed that the two methods provide comparatively accurate estimation with similar RMSE (63.75$\sim$67.26ton/ha) and mean bias ($\pm$1ton/ha). However, it is concluded that the k-NN method for estimating forest biomass is superior in terms of estimation efficiency to the regression model. The total forest biomass of the study site is estimated 8.4 million ton, or 149 ton/ha by the k-NN technique.

Estimation of Carbon Stock and Uptake for Larix kaempferi Lamb. (일본잎갈나무의 탄소저장량 및 흡수량 추정)

  • Kang, Jin-Taek;Son, Yeong-Mo;Yim, Jong-Su;Jeon, Ju-Hyeon
    • Journal of Climate Change Research
    • /
    • v.7 no.4
    • /
    • pp.499-506
    • /
    • 2016
  • This study was conducted to estimate carbon stock and uptake for Larix kaempferi Lamb., the single species, which is the most widely distributed one following Pinus densiflora, using data from 6th national forest inventory and forest type map of 1:5,000. Overall distribution area of Larix kaempferi in South Korea was shown as 272,800ha, in detail, Gangwon-do was the most widely distributed region with 39.6% (108,141 ha) of the whole forest area, and Gyeongsangbuk-do was 18.6%(50,839 ha), Chungcheongbuk-do was 15.1%(41,205ha) in order. As the results of analysis in carbon stock and uptake for each province, the values were high with Gyeonggi-do 109.0 tC/ha, $10.3tCO_2/ha/yr$, Gangwon-do 349.1 tC/ha, $9.7tCO_2/ha/yr$ in order, and Jeollabuk-do was the lowest with 78.3 tC/ha, $7.6tCO_2/ha/yr$. Also, the results of estimation in total carbon stocks and uptakes by year (1989~2015) were turned out that total carbon stocks and uptakes were 24,891 thousand tC, $2,428thousand\;tCO_2$ in 2015, increasing about 4.8 times and 3.8 times each compared with 5,238 thousand C/ha, $640thousand\;CO_2$ in 1989. Although forest area was decreased 26.6% with 371,884 ha in 1989 to 272,800 ha in 2015, carbon stocks and uptakes were increased in 2015 in that forest stock was increased 126% compared to 1989.

Height-DBH Growth Models of Major Tree Species in Chungcheong Province (충청지역 주요 수종의 수고-흉고직경 생장모델에 관한 연구)

  • Seo, Yeon Ok;Lee, Young Jin;Rho, Dai Kyun;Kim, Sung Ho;Choi, Jung Kee;Lee, Woo Kyun
    • Journal of Korean Society of Forest Science
    • /
    • v.100 no.1
    • /
    • pp.62-69
    • /
    • 2011
  • Six commonly used non-linear growth functions were fitted to individual tree height-dbh data of eight major tree species measured by the $5^{th}$ National Forest Inventory in Chungcheong province. A total of 2,681 trees were collected from permanent sample plots across Chungcheong province. The available data for each species were randomly splitted into two sets: the majority (90%) was used to estimate model parameters and the remaining data (10%) were reserved to validate the models. The performance of the models was compared and evaluated by $R^2$, RMSE, mean difference (MD), absolute mean difference (AMD) and mean difference(MD) for diameter classes. The combined data (100%) were used for final model fitting. The results showed that these six sigmoidal models were able to capture the height-diameter relationships and fit the data equally well, but produced different asymptote estimates. Sigmoidal growth models such as Chapman-Richards, Weibull functions provided the most satisfactory height predictions. The effect of model performance on stem volume estimation was also investigated. Tree volumes of different species were computed by the Forest Resources Evaluation and Prediction Program using observed range of diameter and the predicted tree total height from the six models. For trees with diameter less than 30 cm, the six height-dbh models produced very similar results for all species, while more differentiation among the models was observed for large-sized trees.

Development of Estimated Equation for Mortality Rates by Forest Type in Korea (우리나라 침엽수 및 활엽수림의 고사율 추정식 개발)

  • Son, Yeong Mo;Jeon, Ju Hyeon;Lee, Sun Jeong;Yim, Jong Su;Kang, Jin Taek
    • Journal of Korean Society of Forest Science
    • /
    • v.106 no.4
    • /
    • pp.450-456
    • /
    • 2017
  • This study was conducted to develop estimated equation for mortality rates (volume of dead trees, %) on coniferous and broad-leaved forests, representative forest types of South Korea. There were 6 equation models applied for estimating mortality such as a exponential equation, a Hamilton equation and variables using were DBH, basal area, and site index. Raw data used for estimating mortality were $5^{th}$ and $6^{th}$ national forest inventory data, and mortality was calculated with the difference of stocks between lived trees and dead trees by each sample plots. The most applicable equation to describe mortality on coniferous forest and broad-leaved forest was indicated as $P=(1+e^{(a+b{\times}DBH+c{\times}BA+d{\times}no\_ha+e{\times}density)})^{-1}$ and their goodness of fit showed 34% and 51% respectively. Goodness of fit in both equations were not much high because there were various factors which affect the mortality such as topographic conditions, soil characteristic, climatic factors, site quality, and competition. Therefore, it is considered that explaining mortality in forest with only 2 or 3 variables like DBH, basal area used in this analysis could be very difficult facts. However, this study is certainly worth in that there is no useful information on mortality by each forest type throughout the country at the present, and we would make an effort to promote the fitness of estimated equation for mortality adding competition index, tree crown density etc.