• Title/Summary/Keyword: thaw settlement

Search Result 19, Processing Time 0.028 seconds

A novel modeling of settlement of foundations in permafrost regions

  • Wang, Songhe;Qi, Jilin;Yu, Fan;Liu, Fengyin
    • Geomechanics and Engineering
    • /
    • v.10 no.2
    • /
    • pp.225-245
    • /
    • 2016
  • Settlement of foundations in permafrost regions primarily results from three physical and mechanical processes such as thaw consolidation of permafrost layer, creep of warm frozen soils and the additional deformation of seasonal active layer induced by freeze-thaw cycling. This paper firstly establishes theoretical models for the three sources of settlement including a statistical damage model for soils which experience cyclic freeze-thaw, a large strain thaw consolidation theory incorporating a modified Richards' equation and a Drucker-Prager yield criterion, as well as a simple rheological element based creep model for frozen soils. A novel numerical method was proposed for live computation of thaw consolidation, creep and freeze-thaw cycling in corresponding domains which vary with heat budget in frozen ground. It was then numerically implemented in the FISH language on the FLAC platform and verified by freeze-thaw tests on sandy clay. Results indicate that the calculated results agree well with the measured data. Finally a model test carried out on a half embankment in laboratory was modeled.

Effect of Depth on Pipeline Stress and Displacement in Cold Regions with Thaw settlement (배관 매설깊이가 극한지 융해침하 시 배관응력 및 변위에 주는 영향)

  • Kim, Kyung Il;Yeom, Kyu Jung;Oh, Kyu Hwan;Kim, Woo Sik
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.5
    • /
    • pp.82-88
    • /
    • 2016
  • Resource development is needed in order to develop the industry. However, because resources are running out, there is a growing interest in the arctic regions. If you want to develop resources in cold regions, it is necessary to understand the environment there and it should be a priority to secure proper technology for construction. In particular, thaw settlement, which frequently occur in Arctic regions, have a fatal effect on essential pipeline needed to transport resources. Therefore, it is important to analyze how piping will be impacted by thaw settlement. In this study, we developed 3-D FEM model in order to analyze the influence of the buried depth of the pipe at the time of thaw settlement. We analyzed a displaced pipe which is subjected to stress and considered Elasto-plastic, using the finite element analysis according to these Arctic environments.

The Influence of Freeze-Thaw Process on the Physical Properties of Weathered Granite Soils (2) (동결.융해반복작용이 화강암풍화토의 물리적성질에 미치는 영향(II))

  • 유능환;유연택
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.31 no.3
    • /
    • pp.70-80
    • /
    • 1989
  • In this research program special triaxial compression tests and dehydration-swelling tests under the condition of freeze-thaw process were conducted to show the effects of freezethaw process on the physical properties of weathered granite soil, and their results as follows; 1.Consolidation settlement of weathered granite soil mass was increased due to freeze-thaw process, and the initial tangent coefficient of dense state was higher than that of loose state. 2.Compression behaviour of soil was increased according to the decrease of freezing temperature, and when the freezing temperature was reached under - 10$^{\circ}$C, the compression rate was not influenced by change of freezing temperature. 3.The experiments showed that the void ratio and permeability of soil were converged into their values of shrinkage limit, and the permeability was higher due to the freeze-thaw process and as the lower the freezing temperature. 4.The decrease of liquid limit was indicated as the lower the freezing temperature, and as more the freeze4haw cycles, the moisture content was shown the lower side. 5.It was shown that the shrinkage was decreased by freeze-thaw process and not influenced by way of freezing temperature, but dehydration rate was higher.

  • PDF

Thaw consolidation behavior of frozen soft clay with calcium chloride

  • Wang, Songhe;Wang, Qinze;Xu, Jian;Ding, Jiulong;Qi, Jilin;Yang, Yugui;Liu, Fengyin
    • Geomechanics and Engineering
    • /
    • v.18 no.2
    • /
    • pp.189-203
    • /
    • 2019
  • Brine leakage is a common phenomenon during construction facilitated by artificial freezing technique, threatening the stability of frozen wall due to the continual thawing of already frozen domain. This paper takes the frequently encountered soft clay in Wujiang District as the study object, and remolded specimens were prepared by mixing calcium chloride solutions at five levels of concentration. Both the deformation and pore water pressure of frozen specimens during thawing were investigated by two-stage loading tests. Three sections were noted from the changes in the strain rate of specimens during thawing at the first-stage load, i.e., instantaneous, attenuated, and quasi-stable sections. During the second-stage loading, the deformation of post-thawed soils is closely correlated with the dissipation of pore water pressure. Two characteristic indexes were obtained including thaw-settlement coefficient and critical water content. The critical water content increases positively with salt content. The higher water content of soil leads to a larger thaw-settlement coefficient, especially at higher salt contents, based on which an empirical equation was proposed and verified. The normalized pore water pressure during thawing was found to dissipate slower at higher salt contents, with a longer duration to stabilize. Three physical indexes were experimentally determined such as freezing point, heat conductivity and water permeability. The freezing point decreases at higher salt contents, especially as more water is involved, like the changes in heat conductivity. The water permeability maintains within the same order at the considered range of salt contents, like the development of the coefficient of consolidation. The variation of the pore volume distribution also accounts for this.

Stress Analysis of Arctic Thaw Settlement with Gas Pipeline using Finite Element Method (유한요소해석을 활용한 극한지 융해침하에 따른 천연가스배관의 응력해석)

  • Kim, Kyung Il;Yeom, Kyu Jung;Kim, Young-Pyo;Kim, Woo Sik;Oh, Kyu Hwan
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.5
    • /
    • pp.78-84
    • /
    • 2014
  • It is important to secure the supply of gas in arctic region which is not developed recently due to depleting of fossil fuel. It is competing in order to secure the arctic region. The need for the occurring the pipeline design in arctic region is essential for development. In this study, we develop the model of thaw settlements for analysis the stress and displacement which applied with pipe in arctic region between $-40^{\circ}C$ to $20^{\circ}C$. The soil was applied with Mohr-coulomb theory and pipe was elasto-plastic method.

Evaluating the recovering capacity of cracked SRSL in the landfill final cover (SRSL(Self Recovering Sustainable Liner)재의 매립지 최종복토층에서균열 손상 시 치유 능력 검토)

  • Baek, Hyun-Uk;Ha, Min-Ki;Kwon, Oh-Jung;Park, Jun-Boum
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1412-1419
    • /
    • 2005
  • Preventing the infiltration of rainwater into the landfill site is the main purpose of the final cover in landfill sites. Compacted clay layer or geomembrain have been used as a conventional landfill final cover. But they have several disadvantages when damages might occur due to puncturing, differential settlement and desiccation or freeze and thaw. For this reason, as an alternative method SRSL(Self Recovering Sustainable Liner) has been developed. Adopting the precipitation reaction of two chemical material, by forming precipitates that fill the pores, and lower the overall permeability of the liner. The advantage of this method is that when fracture of the liner occurs the remaining reactants of the two layers form precipitates that fill the fracture and recover the low permeability of the liner. In this study, the recovering ability of the SRSL with a crack due to the seasonal variation or differential settlements was investigated by permeability tests. And in order to estimate the durability of the SRSL after freeze/thaw and desiccation, uniaxial compression strength tests were performed.

  • PDF

Development of Numerical Analysis Model for the Calculation of Thermal Conductivity of Thermo-syphon (열 사이펀의 열전도율 산정을 위한 수치해석 모델 개발)

  • Park, Dong-Su;Shin, Mun-Beom;Seo, Young-Kyo
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.1
    • /
    • pp.5-15
    • /
    • 2021
  • The areas consisting of frost susceptible soils in cold regions, such as the Arctic area, have problems of frost heave and thaw settlement due to the seasonal air temperature changes and internal temperature of installed structures. Ground stabilization methods for preventing frost heave and thaw settlement of frost susceptible soils include trenching, backfilling and thermo-syphon. The thermo-syphon is the method in which refrigerant can control the ground temperature by transferring the ground temperature to atmosphere in the from of two-phase flow through the heat circulation of the internal refrigerant. This numerical study applied the function of these thermo-syphon as the boundary condition through user-subroutine coding inside ABAQUS and compared and analyzed the temperature results of laboratory experiments.

A Study of Landfill Coyer Liners by Freezing/Thawing (동결/융해에 따른 폐기물 매립지 복토층 연구)

  • Jai-Young Lee
    • Journal of Korea Soil Environment Society
    • /
    • v.1 no.1
    • /
    • pp.103-109
    • /
    • 1996
  • The cover liners at municipal and hazardous waste landfill is not emphasized as much as the bottom liners. However, one of the most effective reason of landfill destroy is the cover liner failure. The cover system at municipal and hazardous waste landfill, 1 perform the following functions, at minimum: promote surface runoff, impede infiltration, protect settlement in the landfill, and provide a buffer from surface exposure of the waste. This research was to expand the existing knowledge base of landfill cover liner behavior during period of freeze/thaw Also, the great Lysimeter was built in the laboratory to provide as much as same condition with the field and three designs were simulated by actual cover materials. The result of simulation indicated the clay was effected by freezing/thawing. The degradation of cover liners in the frost penetration affects the physical, engineering properties of clay. these factors may consider to design and construct of the landfill. This paper provides the description of testing cover liners, experimental results and a discussion of the results of the simulation.

  • PDF

Applicability of SRSL(Self-Recovering Sustainable Liner) to the Landfill Final Cover System (SRSL(Self Recovering Sustainable Liner)재의 매립지 최종복토층에 대한 활용성 검토)

  • Kwon, Oh-Jung;Seo, Min-Woo;Hong, Soo-Jung;Park, Jun-Boum;Park, Soo-Young
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.453-460
    • /
    • 2004
  • To prevent penetration of rainwater into the landfill site is the main purpose of the final cover in landfill sites. Conventional designs of landfill covers uses geotextiles such as geomembrane and GCL, and clay liners to lower the permeability of final covers of landfill sites. However, differential settlement and the variation of temperature in landfill sites cause the development of cracks or structural damage inside the final cover and it is also difficult to obtain clay - the main material of the compacted clay liner in Korea. Thus the former final cover system that suggests geomembrane and GCL or compacted clay liner has several limitations. Therefore, an alternative method is necessary and one of them is the application of SRSL(self-Recovering Sustainable Liner) material. SRSL is two different layers consist of individual materials that react with each other and form precipitates, and with this process lowers the permeability of the landfill final cover. SRSL generally is made up of two layers, so that when a internal crack occurs the reactants of the two layers migrate towards the crack and heal it by forming another liner. In this study the applicability of SRSL material for landfill final cover was examined by performing; (1) jar test to verify the formation of precipitate in the mixture of each reactants, (2) falling head test considering the field stress in order to confirm the decrease of permeability or prove that the hydraulic condctivity is lower than the regulations, (3) compression tests to judge weather if the strength satisfies the restricts for landfills, (4) freeze/thaw test to check the applicability of SRSL for domestic climate. In addition, the application of waste materials in the environmental and economical aspect was inspected, and finally the possibility of secondary contamination due to the waste materials was examined by performing elution tests.

  • PDF

Slope Movement Detection using Ubiquitous Sensor Network (USN을 이용한 사면거동 탐지)

  • Chang, K.T.;Ho, Albert;Jung, Chun-Suk;Jung, Hoon
    • Journal of Korean Society of societal Security
    • /
    • v.1 no.2
    • /
    • pp.61-66
    • /
    • 2008
  • More than 70% of Korea consists of mountainous area and during the construction of roads and railroads many cut-slopes are inevitably formed. A number of environmental factors, such as the rainy season and frost heave during winter/thaw during spring, can result in rock falls and landslides. The failure of slopes is increasing every year and can cause damage to vehicles, personal injury and even fatality. In order to help protect people and property, there is a need for real-time monitoring systems to detect the early stages of slope failures. In this respect, the GMG has been using Translation Rotation Settlement (TRS) sensor units installed on slopes to monitor movement in real-time. However, the data lines of this system are vulnerable and the whole system can be damaged by a single lightning strike. In order to overcome this, GMG have proposed the use of Ubiquitous Sensor Networks (USN). The adoption of a USN system in lieu of data cables can help to minimize the risk of lightning damage and improve the reliability of slope monitoring systems.

  • PDF