• 제목/요약/키워드: texturing

검색결과 427건 처리시간 0.027초

신축성 Cotton-like 소재개발 및 제품개발에 관한 연구

  • 심승범;서말용;박명수;박종희
    • 한국염색가공학회:학술대회논문집
    • /
    • 한국염색가공학회 2009년도 제41차 학술발표회
    • /
    • pp.143-144
    • /
    • 2009
  • This is studies about development of natural stretch Cotton-like fabric of using PET yarns. The natural stretch Cotton-like yarn is a complex yarn combining PET spiral crimp yarn and PET POY yarn using air texturing technology. The complex yarn is natural stretch function and cotton-like effect itself by technology of air texturing process.

  • PDF

ITY 제조공정조건이 신합섬용 복합사의 물성에 미치는 영향(II) (Effect of Processing Conditions of ITY on the Physical Properties of Compound Yarn for New Synthetic Fabrics( II ))

  • 한원희;이승환;이상정;노태철;김승진
    • 한국염색가공학회지
    • /
    • 제13권2호
    • /
    • pp.135-140
    • /
    • 2001
  • Interlace texturing is very useful method to make compound yarns for new synthetic fabrics. In this study, we make the compound ems for peach skin fabric by interlace texturing method. This study surveys relationship between physical properties of interlace textured yarns and process conditions such as air pressure, yarn tension and take-up speed. Nip density, tensile properties and multi-step shrinkage of the various specimens were discussed with process conditions.

  • PDF

Belt Texturing 공정특성과 DTY 역학물성(II) (The Processing Properties of Belt Texturing and the Mechanical Properties of DTV(II))

  • 정기진;김승진;박경순;강지만
    • 한국섬유공학회:학술대회논문집
    • /
    • 한국섬유공학회 2003년도 가을 학술발표회 논문집
    • /
    • pp.295-296
    • /
    • 2003
  • 급격히 변하는 국제경쟁사회에서 대다수 섬유기업들은 고기능성, 첨단신소재, 산업용 섬유소재개발 등 실용성이 높은 다양한 새로운 직물을 개발하고 이에 관련된 연구가 이루어지고 있는 추세이다. 이런 다양한 직물을 생산하기 위해서는 원사 자체의 물성에 대한 정확한 data$^{l}$)/를 가지고 원사 이후의 공정 특히 사가공 공정에서의 각 공정에 따른 絲의 물성 변화를 파악하는 것이 중요하다. (중략)

  • PDF

질화계 발광다이오드의 측면 형상화를 이용한 광 추출 효율 향상 (Improvement of Light Extraction Efficiency by Side Surface Texturing in Nitride-based Light-Emitting Diodes)

  • 장동현;심종인
    • 한국광학회:학술대회논문집
    • /
    • 한국광학회 2008년도 동계학술발표회 논문집
    • /
    • pp.95-96
    • /
    • 2008
  • We theoretically investigated the influence of side surface texturing on the light extraction efficiency in nitride-based light-emitting diodes (LEDs). The light extraction efficiency was expected as 1.2 times larger in a LED with textured surfaces compared to without ones.

  • PDF

Improvement of haze ratio of DC-sputtered ZnO:Al thin films through HF vapor texturing

  • Kang, Junyoung;Park, Hyeongsik;Yi, Junsin
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.319.1-319.1
    • /
    • 2016
  • Recently, the Al-doped ZnO (ZnO:Al) films are intensively used in thin film a-Si solar cell applications due to their high transmittance and good conductivity. The textured ZnO:Al films are used to enhance the light trapping in thin film solar cells. The wet etch process is used to texture ZnO:Al films by dipping in diluted acidic solutions like HCl or HF. During that process the glass substrate could be damaged by the acidic solution and it may be difficult to apply it for the inline mass production process since it has to be done outside the chamber. In this paper we report a new technique to control the surface morphology of RF-sputtered ZnO:Al films. The ZnO:Al films are textured with vaporized HF formed by the mixture of HF and H2SiO3 solution. Even though the surface of textured ZnO:Al films by vapor etching process showed smaller and sharper surface structures compared to that of the films textured by wet etching, the haze value was dramatically improved. We achieved the high haze value of 78% at the wavelength of 540 nm by increasing etching time and HF concentration. The haze value of about 58% was achieved at the wavelength of 800 nm when vapor texturing was used. The ZnO:Al film texture by HCl had haze ratio of about 9.5 % at 800 nm and less than 40 % at 540 nm. In addition to low haze ratio, the texturing by HCl was very difficult to control etching and to keep reproducibility due to its very fast etching speed.

  • PDF

Surface Texturing한 평행 스러스트 베어링의 열유체윤활 해석: 딤플 반경과 깊이의 영향 (THD Analysis of a Surface Textured Parallel Thrust Bearing: Effect of Dimple Radius and Depth)

  • 정요한;박태조
    • Tribology and Lubricants
    • /
    • 제30권5호
    • /
    • pp.303-310
    • /
    • 2014
  • In order to reduce friction and improve reliability, researchers have applied various surface texturing methods to highly sliding machine elements such as mechanical seals and piston rings. Despite extensive theoretical research on surface texturing, previous numerical results are only applicable to isothermal and iso-viscous conditions. Because the lubricant flow pattern of textured bearing surfaces is much more complicated than that for non-textured bearings, the Navier?Stokes equation is more suitable than the Reynolds equation for the former. This study carries out a thermohydrodynamic (THD) lubrication analysis to investigate the lubrication characteristics of a single micro-dimpled parallel thrust bearing cell. The analysis involves using the continuity, Navier?Stokes, energy, temperature?viscosity relation, and heat conduction equations with the commercial computational fluid dynamics (CFD) code FLUENT. This study discretizes these equations using the finite volume method and solves them using the SIMPLE algorithm. The results include finding the streamlines, pressure and temperature distributions, and variations in the friction force and leakage for various dimple radii and depths. Increasing the dimple radius and decreasing the depth causes a recirculation flow to form because of a strong vortex, and the oil temperature greatly increases compared with the non-textured case. The present numerical scheme and results are applicable to THD analysis of various surface-textured sliding bearings and can lead to further study.

Surface Texturing한 평행 슬라이더 베어링의 열유체윤활 해석: 딤플 깊이의 영향 (Thermohydrodynamic Lubrication Analysis of Surface-Textured Parallel Slider Bearing: Effect of Dimple Depth)

  • 박태조;김민규
    • Tribology and Lubricants
    • /
    • 제33권6호
    • /
    • pp.288-295
    • /
    • 2017
  • In order to improve the efficiency and reliability of the machine, the friction should be minimized. The most widely used method to minimize friction is to maintain the fluid lubrication state. However, we can reduce friction only up to a certain limit because of viscosity. As a result of several recent studies, surface texturing has significantly reduced the friction in highly sliding machine elements, such as mechanical seals and thrust bearings. Thus far, theoretical studies have mainly focused on isothermal/iso-viscous conditions and have not taken into account the heat generation, caused by high viscous shear, and the temperature conditions on the bearing surface. In this study, we investigate the effect of dimple depth and film-temperature boundary conditions on the thermohydrodynamic (THD) lubrication of textured parallel slider bearings. We analyzed the continuity equation, the Navier-Stokes equation, the energy equation, and the temperature-viscosity and temperature-density relations using a computational fluid dynamics (CFD) code, FLUENT. We compare the temperature and pressure distributions at various dimple depths. The increase in oil temperature caused by viscous shear was higher in the dimple than in the bearing outlet because of the action of the strong vortex generated in the dimple. The lubrication characteristics significantly change with variations in the dimple depths and film-temperature boundary conditions. We can use the current results as basic data for optimum surface texturing; however, further studies are required for various temperature boundary conditions.

웨이퍼 접착 텍스쳐링 방식을 이용한 다결정 실리콘 태양전지 제조 (Fabrication of Multi-crystalline Silicon Solar Cell by using Wafer Adhesion Texturing Method)

  • 윤석일;노시철;최정호;정종대;서화일
    • 반도체디스플레이기술학회지
    • /
    • 제15권4호
    • /
    • pp.67-72
    • /
    • 2016
  • In this study, the texturing and the emitter formation processes were carried out with the wafer adhesion method to increase the productivity and reduce the production cost of the multi-crystalline silicon solar cell. After fabricating $156{\times}156mm$ solar cell according to the wafer adhesion method, the operation characteristics were analyzed and compared with those of the solar cell fabricated by the standard process method. In the case of a solar cell formed by the wafer adhesion method, it showed Jsc of $32.87mA/cm^2$, Voc of 0.612V, FF of 78.04% and efficiency of 15.71% respectively. The efficiency of the solar cell formed by the wafer adhesion method was 0.1% higher than that of the solar cell formed by the standard method. In addition, the productivity of the texturing and the emitter formation processes is expected to be approximately doubled. Therefore, it is expected that the manufacturing cost of the multi-crystalline solar cell can be reduced due to the improved productivity compared with the standard process.

마이크로 컨텍 프린팅 기법을 이용한 결정질 실리콘 태양전지의 전면 텍스쳐링 (Front-side Texturing of Crystalline Silicon Solar Cell by Micro-contact Printing)

  • 홍지화;한윤수
    • 한국전기전자재료학회논문지
    • /
    • 제26권11호
    • /
    • pp.841-845
    • /
    • 2013
  • We give a textured front on silicon wafer for high-efficiency solar cells by using micro contact printing method which uses PDMS (polydimethylsiloxane) silicon rubber as a stamp and SAM (self assembled monolayer)s as an ink. A random pyramidal texturing have been widely used for a front-surface texturing in low cost manufacturing line although the cell with random pyramids on front surface shows relatively low efficiency than the cell with inverted pyramids patterned by normal optical lithography. In the past two decades, the micro contact printing has been intensively studied in nano technology field for high resolution patterns on silicon wafer. However, this promising printing technique has surprisingly never applied so far to silicon based solar cell industry despite their simplicity of process and attractive aspects in terms of cost competitiveness. We employ a MHA (16-mercaptohexadecanoic acid) as an ink for Au deposited $SiO_2/Si$ substrate. The $SiO_2$ pattern which is same as the pattern printed by SAM ink on Au surface and later acts as a hard resist for anisotropic silicon etching was made by HF solution, and then inverted pyramidal pattern is formed after anisotropic wet etching. We compare three textured surface with different morphology (random texture, random pyramids and inverted pyramids) and then different geometry of inverted pyramid arrays in terms of reflectivity.

RIE 표면 텍스쳐링 모양에 따른 결정질 실리콘 태양전지의 영향 (Influence of Crystalline Si Solar Cell by Rie Surface Texturing)

  • 박인규;윤명수;현덕환;진법종;최종용;김정식;강형동;권기청
    • 한국진공학회지
    • /
    • 제19권4호
    • /
    • pp.314-318
    • /
    • 2010
  • 다결정 실리콘 웨이퍼 표면에 대면적 reactive ion etching (RIE) 장비로 표면 텍스쳐를 형성한 뒤 태양전지를 제작하였다. 웨이퍼 표면에 텍스쳐를 형성하는 것은 광학적 손실을 줄이기 위해 일반적으로 사용되는 방법으로 alkaline etching이 사용된다. 그러나 다결정 실리콘 태양전지의 경우 재료의 결정 방향에 따라 식각되는 alkaline etching은 텍스쳐링의 모양을 제어할 수 없어 효과적이지 못하다. 이와 달리 플라즈마 식각방법을 사용하면 표면 텍스쳐의 모양을 효과적으로 제어하여 조금 더 낮은 반사율을 얻을 수 있다. 하지만 텍스쳐 모양 조절로 얻은 낮은 반사율이 항상 높은 변환효율을 얻을 수 있는 것은 아니다. 본 연구에서는 대면적 RIE 공정 조건별로 얻은 태양전지 표면 텍스쳐의 모양에 따라 각각의 반사율과 양자효율 및 변환효율이 미치는 영향을 살펴보았다.