• Title/Summary/Keyword: texture.

Search Result 7,746, Processing Time 0.038 seconds

A Study on the Physico-Chemical Characteristics of Acid Sulfate Soil in Kimhae Plain (김해평야(金海平野)에 분포(分布)된 특이산성토(特異酸性土)(답)(沓)의 이화학적성질(理化學的性質)에 관(關)한 조사연구(調査硏究))

  • Park, N.J.;Park, Y.S.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.2 no.1
    • /
    • pp.15-26
    • /
    • 1969
  • The study on physico-chemical characteristics of the acid sulfate soil present in Kimhae plain was carried out with 28 surface and subsoils from lower and higher produtive area and two representative profile samples from the areas reclaimed a few decades ago and around 10 years ago respectively. 1. There are no differences in soil texture between lower and higher productive soils being mostly silty clay loam and silty clay. 2. Very significant differences in pH, degree of base saturation and extractable aluminium content are observed; lower pH, lower degree of base saturation and higher aluminium in the lower productive soils and subsoils. The pH and degree of base saturation of these soils are extremely low whereas aluminium content is very high compared to ordinary paddy soil. 3. Cation exchange capacity of these soils are slightly higher than ordinary paddy soils. In higher productive soils, exchangeable calcium and magnesium are of same order, whereas in lower productive soils magnesium content is appreciably higher than calcium. 4. Though the soil is derived from marine and estuarine sediment, the soluble salt content is not high. There are only few lower productive surface soils and subsoils having Ec values of the saturation extracts higher than 4 mmhos but lower than 9 mmhos/cm. 5. Organic matter content of these soils is a bit higher compared to ordinary paddy soils, but, nitrogen content is comparatively low. C/N ratio of these soils is around 12. 6. Sulfur content is considerably higher but oxidizable sulfur is found to be very low. Total sulfur is generally high in subsoils and lower productive soils. 7. Active iron and available silica are slightly higher than ordinary paddy soils but easily reducible manganese is very low. Almost no differences are also observed between lower and higher productive soils. 8. Available phosphorus content is extremely low in particular, regardless of higher or lower productive soils. 9. The two representative profiles from the area of earlier reclamation and recent one show that samples from earlier reclaimed area contain less amount of free acids, sulfur compounds, toxic aluminium and soluble salts etc. than the other. This indicate greater leaching and possible addition of lime for a longer period of time. 10. From the results obtained, it can be concluded the higher productivity of group I soils is due to the greater leaching and neutralisation of acidity by liming materials, It can also be concluded that the productivity of both types can be increased by addition of liming materials and improvement of drainage facilities.

  • PDF

Comparison of Establishment Vigor, Uniformity, Rooting Potential and Turf Qualtiy of Sods of Kentucky Bluegrass, Perennial Ryegrass, Tall Fescue and Cool-Season Grass Mixtures Grown in Sand Soil (모래 토양에서 켄터키블루그라스, 퍼레니얼라이그라스, 톨훼스큐 및 한지형 혼합구 뗏장의 피복도, 균일도, 근계 형성력 및 잔디품질 비교)

  • 김경남;박원규;남상용
    • Asian Journal of Turfgrass Science
    • /
    • v.17 no.4
    • /
    • pp.129-146
    • /
    • 2003
  • Research was initiated to compare establishment vigor, uniformity, rooting potential and turf quality in sods of cool-season grasses (CSG). Several turfgrasses grown under pure sand soil were tested. Establishment vigor, uniformity, rooting potential and turf quality were evaluated in the study. Turfgrass entries were comprised of three blends from Kentucky bluegrass (KB, Poa pratensis L.), perennial ryegrass (PR, Lolium perenne L.), and tall fescue (TF, Festuca arundinacea Schreb.), respectively and three mixtures among them. Differences by treatments were significantly observed in establishment vigor, uniformity, rooting potential and turf quality. Early establishment vigor was mainly influenced by germination speed, being fastest with PR, intermediate with TF and slowest with KB. In a late stage of growth, however, it was affected more by growth habit, resulting in highest with KB and slowest with TF. There were considerable variations in sod uniformity among turfgrasses. Best uniformity among monostand sods was associated with KB, while poorest one with TF. PR sod produced intermediate uniformity between KB and TF. The uniformity of polystand sods of CSG mixtures was inferior to that of monostands of KB, PR and TF, due to characteristics of mixtures comprised of a variety of color, density, texture and growth habit. The greatest potential of sod rooting was found with PR and the poorest with KB. Intermediate potential between PR and KB was associated with TF. In CSG mixtures, it was variable, depending on turfgrass mixing rates. Generally, the higher the PR in mixtures, the greater the sod rooting potential. At the time of sod harvest, however, turfgrass quality of KB was superior to that of PR. because of its characteristics of uniform surface, high density and good mowing quality. These results suggest that a careful expertise based on turf quality as well as sod characteristics like establishment vigor, uniformity and rooting potential be strongly required for the success of golf course or athletic field in establishment.

Processing of Intermediate Product(Krill Paste) Derived from Krill (크릴을 원료로 한 식품가공용 중간소재(크릴페이스트) 가공에 관한 연구)

  • LEE Eung-Ho;CHA Yong-Jun;OH Kwang-Soo;Koo Jae-Keun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.18 no.3
    • /
    • pp.195-205
    • /
    • 1985
  • As a part of investigation to use the Anatrctic krill, Euphausia superba, more effectively as a food source, processing conditions, utilizations and storage stability of krill paste (intermediate product of krill) were examined and also chemical compositions of krill paste were analyzed. Frozen raw krill was chopped, agitated with $25\%$ of water to the minced krill and then centrifuged to separate the liquid fraction from the residue. This liquid fraction was heated at $98^{\circ}C$ for 20 min. to coagulate the proteins of krill, and it was filtered to separate the protein fraction. Krill paste was prepared with grinding the protein fraction, adding $0.2\%$ of polyphosphate and $0.3\%$ of sodium erythorbate to the krill paste for enhancing of functional properties and quality stability. The krill paste was packed in a carton box, and then stored at $-30^{\circ}C$. Chemical compositions of krill paste were as follows : moisture $78\%$, crude protein $12.9\%$, crude lipid $5.9\%$, and the contents of hazardous elements of krill paste as Hg 0.001 ppm, Cd 1.15 ppm, Zn 9.1 ppm, Pb 0.63 ppm and Cu 11.38ppm were safe for food. The amino acid compositions of krill paste showed relatively high amount of taurine, glutamic acid, aspartic acid, leucine, lysine and arginine, which occupied $55\%$ of total amino acid and also taurine, lysine, glycine, arginine and proline were occupied $65\%$ of total free amino acid. Fatty acid compositions of krill paste consist of $32.4\%$ of saturated fatty acid, $29.6\%$ of monoenoic acid and $38.0\%$ of polyenoic acid, and major fatty acids of product were eicosapentaenoic acid ($17.8\%$), oleic acid ($16.9\%$), palmitic acid ($15.3\%$), myristic acid ($8.7\%$) and docosahexaenoic acid ($8.4\%$). In case of procssing of fish sausage as one of experiment for krill paste use, Alaska pollack fish meat paste could be substituted with the krill paste up to $30\%$ without any significant defect in taste and texture of fish sausage, and the color of fish sausage could be maintained by the color of krill paste. Judging from the results of chemical and microbial experiments during frozen storage, the quality of krill paste could be preserved in good condition for 100 days at $-39^{\circ}C$.

  • PDF

The Morphology, Physical and Chemical Characteristics of the Red-Yellow Soils in Korea (우리나라 전토양(田土壤)의 특성(特性) (저구릉(低丘陵), 산록(山麓) 및 대지(臺地)에 분포(分布)된 적황색토(赤黃色土)를 중심(中心)으로))

  • Shin, Yong Hwa
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.6 no.1
    • /
    • pp.35-52
    • /
    • 1973
  • Red Yellow Soils occur very commonly in Korea and constitute the important upland soils of the country which are either presently being cultivated or are suitable for reclaiming and cultivating. These soils are distributed on rolling, moutain foot slopes, and terraces in the southern and western parts of the central districts of Korea, and are derived from granite, granite gneiss, old alluvium and locally from limestone and shale. This report is a summary of the morphology, physical and chemical characteristics of Red Yellow Soils. The data obtained from detailed soil surveys since 1964 are summarized as follows. 1. Red-Yellows Soils have an A, Bt, C profile. The A horizon is dark colored coarse loamy or fine loamy with the thin layer of organic matter. The B horizon is dominantly strong brown, reddish brown or yellowish red, clayey or fine loamy with clay cutans on the soil peds. The C horizon varies with parent materials, and is coarser texture and has a less developed structure than the Bt horizon. Soil depth, varied with relief and parent materials, is predominantly around 100cm. 2. In the physical characteristics, the clay content of surface soil is 18 to 35 percent, and of subsoil is 30 to 90 percent nearly two times higher than the surface soil. Bulk density is 1.2 to 1.3 in the surface soil and 1.3 to 1.5 in the subsoil. The range of 3-phase is mostly narrow with 45 to 50 percent in solid phase, 30 to 45 percent in liquid one, and 5 to 25 percent in gaseous state in the surface soil; and 50 to 60 solid, 35 to 45 percent liquid and less than 15 percent gaseous in the subsoil. Available soil moisture capacity ranges from 10 to 23 percent in the surface soil, and 5 to 16 percent in the subsoil. 3. Chemically, soil reaction is neutral to alkaline in soils derived from limestone or old fluviomarine deposits, and acid to strong acid in other ones. The organic matter content of surface soil varying considerably with vegetation, erosion and cultivation, ranges from 1.0 to 5.0 percent. The cation exchange capacity is 5 to 40 me/100gr soil and closely related to the content of organic matter, clay and silt. Base saturation is low, on the whole, due to the leaching of extractable cations, but is high in soils derived from limestone with high content of lime and magnesium. 4. Most of these soils mainly contain halloysite (a part of kaolin minerals), vermiculite (weathered mica), and illite, including small amount of chlorite, gibbsite, hematite, quartz and feldspar. 5. Characteristically they are similar to Red Yellow Podzolic Soils and a part of Reddish Brown Lateritic Soils of the United States, and Red Yellow Soils of Japan. According to USDA 7th Approximation, they can be classified as Udu Its or Udalfs, and in FAO classification system to Acrisols, Luvisols, and Nitosols.

  • PDF

The Ripening of Camembert Cheese Made with Mucor Miehei Rennet (Mucor Miehei 응유효소(凝乳酵素)로 제조(製造)한 Camembert Cheese의 숙성(熟成)에 관(關)한 연구(硏究))

  • Park, Mooh Il;Kim, Jong Woo
    • Korean Journal of Agricultural Science
    • /
    • v.16 no.2
    • /
    • pp.179-200
    • /
    • 1989
  • Mucor miehei rennet(MR) was added as calf rennet(CR) substitutes in the fixed amounts of mixed rennets in making Camembert cheese. The conditions in the variations of chemical composition: water-soluble nitrogen, non-caseinic nitrogen, non-proteinic nitrogen, amino nitrogen, ammoniacal nitorgen, electrophoresis, molecular fractionation, mineral distribution, texture characterisitics, free amino acids and free fatty acids, were checked up with the sensory test and the chesse yields at each ripening period. The results obtained by investigating the utility of Mucor rennet were summarized as follows: 1. CR chesse, MR cheese and the mixed-rennet chesse failed to show any significant difference in their yields of 15%. 2. The contents of protein, fat and ash in MR cheese gave lower value than CR cheese did and with progress of ripening lactose decreased rapidly after 14 days of ripening. The difference among the rate of addition of mucor rennet was not recognized. 3. The WSN contents of 5 fresh sample chesse were from 14.7% to 17.3% and WSN increased from 39.7% to 41.0% with progress of ripening. After 21 days of ripening MR chesse had more WSN than CR cheese did. In NCN and ammoniacal nitrogen MR cheese showed higher value. 4. As the ripening progressed, MR chesse showed more cystein, phenylalanine and proline than CR chesse did but it failed to show any increase in aspartic acid, threonine and glutamic acid etc. 5. In the content of free fatty acid MR chesse showed higher value than CR cheese did and with the progress of ripening fatty acids increased from 8.36 mEq to 26.36 mEq but did not show any significant difference in the cheese types by the coagulant ratio. 6. Ca contents in the sample chesse were 0.238-0.27%, Mg 0.019-0.022%, Na 0.910-1.047%, and K 0.175-0.200%. The important non-sedimentable Ca in casein remained from 61 % to 77% without regard the ripening periods and added-rennets and Mg remained from 59.1% to 92.5% in non-sedimentable and water-soluble conditions. 7. In the fractionation of protein by ultrafilteration, MW> $5{\times}10^4$ decresed from 95% at the beginning period of ripening to 45% and MW< $10^4$ increased from 0.2% to 38% and definite caseinolysis was shown in all samples. 8. All the cheese showed to different electrophoretic patterns for the added-amounts of mucor rennet in the 14 days of ripenig. In the 28 days or ripening, MR cheese kept some bands on the patterns compared with CR cheese. 9. In vitro digestibility increased from 81.48-94.81 % to 94.47-98.61% but failed to show any significant difference in the cheese types by the coagulant ratio. 10. In hardness, MR cheese showed lower value compared with CR cheese as the ripening progressed. 11. The results of the sensory test failed to show any difference in flora rind, feelings in mouth and hands, deep structure, flavor and bitterness between CR Camembert cheese and MR Camembert chesse.

  • PDF

The Qualitiy Characteristics of Kimchi added Vinegar, Mustard and Leaf Vegetables (식초, 겨자, 잎채소를 첨가한 김치의 품질특성)

  • Pak, Hee-Ok;Sohn, Chun-Young
    • The Korean Journal of Food And Nutrition
    • /
    • v.26 no.4
    • /
    • pp.841-849
    • /
    • 2013
  • The aim of this study was to investigate the quality characteristics of Kimchi, prepared with seasoning fluid, vinegar, and mustard extract to inhibit the proliferation of microorganisms and extend the edible period during fermentation at $25^{\circ}C$. We also added perilla leaf, endive, and mustard leaf to Kimchi to improve the flavor. The pH of control Kimchi fluid over 1 day after Kimchi processing, was $5.40{\pm}0.01$ and that of the experimental groups in which vinegar and mustard extract were added was $4.51{\pm}0.01{\sim}4.52{\pm}0.01$, which was lower than that of the control. As the fermentation progresses, the pH of the control decreased rapidly and that of the experimental groups decreased slowly. The initial titratible acidity of the control was low and 3 days later reached $0.95{\pm}0.04$. However, that of the experimental groups was $0.42{\pm}0.01{\sim}0.43{\pm}0.02$ and 5 days later reached a level similar to that of the control. The salinities of the Kimchi juice of both the control and the experimental groups were $2.67{\pm}0.06{\sim}2.80{\pm}0.10$% after 1 day and decreased during fermentation. The amount of lactic acid bacteria of the control was $8.17{\pm}4.01{\times}10^8cfu/g$, 1 day after the Kimchi processing and that of the experimental groups was $2.70{\pm}2.08{\times}10^7{\sim}3.63{\pm}2.80{\times}10^7cfu/g$. After 3 days, these were $3.13{\pm}1.94{\times}10^{11}cfu/g$ and $2.47{\pm}2.23{\times}10^9{\sim}8.03{\pm}3.71{\times}10^9cfu/g$, respectively. According to the result of sensory evaluation, throughout the entire period of the experiment, all sensory items such as color, odor, taste, texture, and total acceptability of the experimental groups were better than those of the control group (p<0.05). Especially, Kimchi in which perilla leaf was added was the best. With the addition of vinegar and mustard extract to the Kimchi, microorganism proliferation was inhibited and the edible period was extended. The minerals, vitamins and antioxidants of leaf vegetables could therefore be obtained.

Quality Properties of Chonggak Kimchi Fermented at different Combination of Temperature and Time (발효 온도와 시간 조합을 달리한 총각김치의 품질 특성)

  • Kang, Jeong-Hwa;Kang, Sun-Hee;Ahn, Eun-Sook;Chung, Hee-Jong
    • Journal of the Korean Society of Food Culture
    • /
    • v.18 no.6
    • /
    • pp.551-561
    • /
    • 2003
  • To determine the conditions of the fermentation and storage for Chonggak kimchi in kimchi refrigerator, prepared Chonggak kimchi took into kimchi refrigerators which were controlled at four different modes of the fermented temperature and time, and fermented and kept for 16 weeks. The pH in Chonggak kimchi fermented at $20^{\circ}C$ for 24 hours/stored at $-1^{\circ}C$ dropped greater than all of kimchi fermented at other combinations, and the changes of pH at any combinations were not greater than those in Baechu kimchi, because pH in Chonggak kimchi did not dropped below 4.5. Acidities in Chonggak kimchi were greatly increased at higher temperature. The acidity in Chonggak kimchi during the first week of fermentation was lower than that in Baechu kimchi and then it was rather higher because of the addition of waxy rice paste. In texture, puncture force of Chonggak kimchi was decreased slowly until 8 weeks of fermentation and then did not changed much and the highest values showed in Chonggak kimchi stored directly at $-1^{\circ}C$ without any fermentation. In sensory evaluation, the scores for the carbonated flavor and the sourness were the highest in Chonggak kimchi fermented at $20^{\circ}C$ for 24 hours/stored at $-1^{\circ}C$, but the lowest in Chonggak kimchi stored directly at $-1^{\circ}C$ without any fermentation because of some undesirable flavors. The lowest hardness showed in Chonggak kimchi fermented at highest temperature and the best hardness was in Chonggak kimchi fermented at $5^{\circ}C$ for 3 days or 6 days/stored at $-1^{\circ}C$. The appearance was the best in Chonggak kimchi fermented at $20^{\circ}C$ for 24 hours/stored at $-1^{\circ}C$ and the worst was in Chonggak kimchi stored directly at $-1^{\circ}C$ without any fermentation. The overall acceptability of Chonggak kimchi fermented at $20^{\circ}C$ for 24 hours/stored at $-1^{\circ}C$ was good after 4 weeks of fermentation, but in Chonggak kimchi fermented at $5^{\circ}C$ for 3 days or 6 days/stored at $-1^{\circ}C$ it was good after 6 weeks. Total microbial counts in most of Chonggak kimchi were reached to a maximum number within 7 days, and then decreased similarly at all modes. Leuconostoc spp. and Lactobacillus spp. increased to maximum number of $1.48{\times}10^9\;and\;5.62{\times}10^9$, respectively, in Chonggak kimchi fermented for 7 days. Yeast counts showed a increasing trend not depends on fermenting temperature and they were lower counts than those in Baechu kimchi. Waxy rice paste which added to Chonggak kimchi resulted in increasement of glucose as a carbon source and stimulated to reproduce the microbes in Chonggak kimchi.

Determination of optimum fertilizer rates for barley reflecting the effect of soil and climate on the response to NPK fertilizers (기상(氣象) 및 토양조건(土壤條件)으로 본 대맥(大麥)의 NPK 시비적량결정(施肥適量決定))

  • Park, Nae Joung;Lee, Chun Soo;Ryu, In Soo;Park, Chun Sur
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.7 no.3
    • /
    • pp.177-184
    • /
    • 1974
  • An attempt was made to determine simple and the most reasonable fertilizer recommendation for barley utilizing the present knowledge about the effect of soil and climatic factors on barley response to NPK fertilizer in Korea and establishing the critical contents of available nutrients in soils. The results were summarized as follows. 1. The relationships between relative yields or fertilizers rates for maximum yields from quadratic response curves and contents of organic matter, available $P_2O_5$, exchangeable K in soils were examined. The trend was more prospective with relative yields because of smaller variation than with fertilizer rates. 2. Since the relationship between N relative yields and organic matter contents in soils was almost linear over the practical range, it was difficult to determine the critical content for nitrogen response by quadrant methods. However, 2.6%, country average of organic matter content in upland soils was recommended as the critical point. 3. There showed a trend that average optimum nitrogen rater was higher in heavy texture soils, colder regions. 4. The critical $P_2O_5$ contents in soil were 96 or 118 ppm in two different years, which were very close to the country average, 114 ppm of $P_2O_5$ contents in upland soils. The critical K content in soil was 0.32 me/100g, which was exactly coincident to the country average of exchangeable K in upland soils. 5. According to the contents of avaiiable $P_2O_5$ and exchangeable K, several ranges were established for the purpose of convenience in fertilizer recommendation, that is, very low, Low, Medium, High and very High. 6. More phosphate was recommended in the northern region, clayey soils, and paddy soils, whereas less in the southern region and sandy soils. More potash was recommended in the northern region and sandy soils, whereas less in the southern region and clayey soils. 7. The lower the PH, the more fertilizers were recommended. However, liming was considered to be more effective than increas in amount of fertilizers.

  • PDF

Optimization of Modified Starches on Retrogradation of Korean Rice Cake(Garaeduk) (가래떡의 노화 억제에 관한 변형 전분의 최적화)

  • Park, Hyun-Jeong;Song, Jae-Chul;Shin, Wan-Chul
    • The Korean Journal of Food And Nutrition
    • /
    • v.19 no.3
    • /
    • pp.279-287
    • /
    • 2006
  • This study was carried out to investigate the influences of modified starches on suppression of retrogradation in Korean rice cake for their optimization, Garaeduk. Based upon studying Avrami equation, the Avrami exponent n value of all the experiment samples was found to be 1.03 ${\sim}$ 1.37 in the influence of modified starches on retrogradation of the rice cake. This means that the retrogradation of the Korean rice cake occurred instantly after the crystallization of starch particles in the Korean rice cake formulated by modified starches. The highest Avrami exponent n value was indicated in the control sample. The rate constant k of retrogradation in the Korean rice cake formulated by modified starches showed comparatively low and appeared to be the lowest in the Korean rice cake formulated by SHPP. This tendency was shown well in the time constant(1/k) of retrogradation velocity. According to the DSC analysis, the onset temperature of gelatinization in thermal characteristics showed somewhat high in case of addition of modified starch into the Korean rice cake on storage time and the SHPP was slowly gone up. In peak temperature of gelatinization in thermal characteristics of the DSC analysis, SSOS and ASA were increased a little in comparison with the control. The control was comparatively high increase. Melting enthalphy of all samples added with modified starches (SSOS: 21.1${\rightarrow}$23.7${\rightarrow}$24.1, ASA: 21.1${\rightarrow}$24.8${\rightarrow}$25.4) appeared to be lower than that of the Korean rice cake without modified starches(21.2${\rightarrow}$26.1${\rightarrow}$27.1). The Korean rice cake added with SHPP was shown to be the lowest in the increasing rate of melting enthalpy(20.9${\rightarrow}$21.4${\rightarrow}$22.1). Heat spreadability of all the samples in Martin melting diameter was revealed to be good in order of control, ASA, SSOS, SHPP and especially the Korean rice cake added with SHPP was shown to be the best in heat spreadability. In color, sensory examination and textural characteristic of the Korean rice cake added with modified starches, the L$^*$value was not changed practically with the storage time and seemed to be stable. The a$^*$ value of the samples was followed by control(2.21${\rightarrow}$5.34: 141.6%), ASA (2.01${\rightarrow}$4.22: 110.0%), SSOS (2.78${\rightarrow}$4.87: 75.2%) and SHPP (2.12${\rightarrow}$3.40: 60.4%) in order of color change. Also the b$^*$ value of the samples was followed by control(4.32${\rightarrow}$6.35: 47.0%), ASA (4.66${\rightarrow}$5.73: 23.0%), SSOS (4.90${\rightarrow}$5.89: 20.2%) and SHPP (4.89${\rightarrow}$5.12: 4.7%) and there was the least (or no) color change with the SHPP. Textural characteristics of samples was shown to be the highest in case of modified starch addition and especially SHPP appeared to be the best in texture.

STUDIES ON THE UTILIZATION OF ANTARCTIC KRILL 2. Processing of Paste Food, Protein Concentrate, Seasoned Dried Product, Powdered Seasoning, Meat Ball, and Snack (남대양산 크릴의 이용에 관한 연구)

  • PARK Yeung-Ho;LEE Eung-Ho;LEE Kang-Ho;PYEUN Jae-Hyeung;KIM Se-Kweun;KIM Dong-Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.13 no.2
    • /
    • pp.65-80
    • /
    • 1980
  • Processing conditions of the krill products such as paste food, krill protein concentrate, seasoned dried krill, powdered seasoning, meat ball, and snack have been examined and the quality was evaluated chemically and organoleptically. In the processing of paste food, krill juice was yielded $71\%$ and krill scrap $29\%$. The yields of paste and broth from the krill juice showed $53\%$ and $43\%$, respectively. In amino acid composition of the krill paste, proline, glutamic acid, aspartic acid, lysine, and leucine were abundant, while histidine, methionine, tyrosine, serine and threonine were poor. The optimum condition for solvent extraction in the processing of krill protein concentrate was the 5 times repetitive extraction using isopropyl alcohol at $80^{\circ}C$ for 5 mins. The yield of krill protein concentrate when used fresh frozen materials was $10.2\%$ in isopropyl alcohol solvent and $8.8\% in ethyl alcohol, and when used preboiled frozen materials, the yield was $13.0\%$ in isopropyl alcohol and $11.8\%$ in ethyl alcohol. Amino acid composition of krill protein concentrate showed a resemblance to that of fresh frozen krill meat. In quality comparison of the seasoned dried krill, hot air dried krill was excellent as raw materials and sun dried krill was slightly inferior to hot air dried krill, but preboiled frozen krill showed the poorest quality. The result of quality evaluation for seasoning made by combination of dried powdered krill, parched powdered sesame, salt, powdered beef extract, monosodium glutamate, powdered red pepper and ground pepper showed that the hot air dried krill was good in color and sundried krill was favorable in flavor. When krill meat ball was prepared using wheat flour, monosodium glutamate and salt as side materials, the quality of the products added up to $52\%$ of krill meat was good and the difference in quality upon the results of the organoleptic test for raw materials was not recognizable between fresh frozen and preboiled frozen krill. In the experiment for determining the proper amount of materials such as dried Powdered krill, $\alpha-starch$, sweet potato starch, sugar, salt, monosodium glutamate, glycine, potassium tartarate, ammonium bicarbonate, and sodium bicarbonate in processing krill snack, sample B(containing $7.7\%$ of dried powdered krill) and sampleC (containing $10.8\%$ of dried powdered krill) showed the most palatable taste from the view point of organoleptic test. Sweet potato starch in testing side materials was good in the comparison of suitability for processing krill snack. Corn starch and kudzu starch were slightly inferior to sweet potato starch, while wheat flour was not proper for processing the snack. In the experiment on frying method, oil frying showed better effect than salt frying and the suitable range of frying temperature was $210-215^{\circ}C$.

  • PDF