• Title/Summary/Keyword: texture plane

Search Result 168, Processing Time 0.027 seconds

Effects of Initial Anisotropy in the Plane Sheet on Stretching Process (판재의 초기 이방성이 스트레칭 성형에 미치는 영향)

  • 배석용;이용신
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1998.03a
    • /
    • pp.242-245
    • /
    • 1998
  • Effects of the anisotrpy due to the initial textures in the plane sheet on plane strain punch stretching has been investigated. In this study, the anisotropy from textures in the sheet is incoporated into the finite element process model by combining the theory of crstal plasticity. Three different textures such as random texture, plane strain compression texture and cube texture are considered. Variations of puch loads as well as thickness distributions of the sheets with three different initial textures are investigated.

  • PDF

Yield function of the orthotropic material considering the crystallographic texture

  • Erisov, Yaroslav A.;Grechnikov, Fedor V.;Surudin, Sergei V.
    • Structural Engineering and Mechanics
    • /
    • v.58 no.4
    • /
    • pp.677-687
    • /
    • 2016
  • On the basis of the energy approach it is reported a development of the yield function and the constitutive equations for the orthotropic material with consideration of the crystal lattice constants and parameters of the crystallographic texture for the general stress state. For practical use in sheet metal forming analysis it is considered different loading scenarios: plane stress and plane strain states. Using the proposed yield function, the influence of single ideal components on the shape of yield surface was analyzed. The six texture components investigated here were cube, Goss, copper, brass, S and rotated cube, as these components are typically observed in rolled sheets from FCC alloys.

Obtaining the Surface Orientation of Texture Image using the Texture Spectrum and Mathematical Morphology (텍스처 스펙트럼을 이용한 텍스처 영상의 표면 방향 추출)

  • Kim, Do-Nyun;Cho, Dong-Sub
    • Proceedings of the KIEE Conference
    • /
    • 1995.07b
    • /
    • pp.989-991
    • /
    • 1995
  • In this paper, we present a new morphological texture spectrum approach to obtain a surface orientation using the variation of texture image caused by projective distortions. Under the assumption that the surface of texture image is smooth continuous, and specially plane or sphere, we apply the mathematical morphology and texture spectrum in order to compute the 3-D surface orientation. If the surface of texture image is plane, the surface orientation can be obtained through a simple procedure. If the surface of texture image is sphere, we find the centroids of texels, and may compute several major axes, their slopes, and vanishing points. Using the texture spectrum between the intersections of the vanishing points and the size of elements in each texels, we can find the surface orientation of texels on the sphere.

  • PDF

Effects of Deformation Conditions on Microstructure Formation Behaviors in High Temperature Plane Strain Compressed AZ91 Magnesium Alloys (고온 평면변형된 AZ91 마그네슘 합금의 미세조직 및 집합조직의 형성거동)

  • Minho Hong;Yebin Ji;Jimin Yun;Kwonhoo Kim
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.37 no.2
    • /
    • pp.66-72
    • /
    • 2024
  • To investigate the effect of deformation condition on microstructure and texture formation behaviors of AZ91 magnesium alloy with three kinds of initial texure during high-temperature deformation, plane strain compression tests were carried out at high-temperature deformation conditions - temperature of 673 K~723 K, strain rate of 5 × 10-3s-1, up to a strain of -1.0. To clarify the texture formation behavior and crystal orientaion distribution, X-ray diffraction and EBSD measurement were conducted on mid-plane section of the specimens after electroltytic polishing. As a result of this study, it is found that the main component and the accumulation of pole density vary depending on initial texture and deformation caondition, and the formation and development basal texture components ({0001} <$10\bar{1}0$>) were observed regardless of the initial texure in all case of specimens.

A Study on Texture Development in Liquid-Phase Sintered Silicon Carbide (액상소결한 탄화규소의 집합조직 발달에 관한 연구)

  • 성한규;조경식;박노진;최헌진;이준근
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.4
    • /
    • pp.320-326
    • /
    • 2000
  • Development of texture in SiC materials by hot-pressing and subsequent annealing was studied. Crystallographic texture type was characterized by measuring X-ray pole figures on the perpendicular plane to the hot-pressing direction. Observed all pole figures were nearly axially symmetric (fiber texture). In case of ${\beta}$-SiC materials, the pole density of basal plane (0004) increased as annealing time increased, in contrast, other planes (hkil) of ${\beta}$-SiC materials and all planes of ${\alpha}$-SiC materials nearly remained unchanged. In the case of ${\beta}$-SiC materials, therefore, a weak texture of (0001) plane at the normal direction took place in the 8h annealed samples, resulting from grian growth. The fracture toughness values of ${\alpha}$-SiC materials measured in both planes parallel and perpendicular to the hot-pressing direction were very similar. However, the fracture toughness of ${\beta}$-SiC materials measured parallel to the hot-pressing direction were higher than that measured perpendicular to the hot-pressing derection, relatively, because of the texture and the microstructure anisotropy.

  • PDF

Effect of Initial Textures on the Plane Strain Stretching (판재의 초기집합조직이 평면변형률 스트레칭 변형에 미치는 영향)

  • Bae, Seok-Yong;Lee, Yong-Sin
    • Transactions of Materials Processing
    • /
    • v.7 no.5
    • /
    • pp.459-464
    • /
    • 1998
  • Effect of the several initial textures such as random texture, rolling texture and cube texture, on the plane strain stretching was studied by interpretation of the finite element method. The calculation of yield locus indicated that the sheet oriented in the cube texture exhibits easy yielding on uniaxial stress state whereas the sheet having either a random or the rolling texture exhibits easy yielding on shear deformation. Upon stretching tests, the thickness strain at the center region contacting the punch was identical regardless of the initial textures while the dependence of the thickness strain on the initial texture was found in the other regions. In general punch loads required or the sheet with an initial cube texture was as expected from calculated yield locus, lower than those for the others.

  • PDF

Anisotropic Mechanical Properties of Pr(Co,In)5-type Compounds and Their Relation to Texture Formation in Die-upset Magnets

  • Kwon, H.W.;Kim, D.H.;Yu, J.H.
    • Journal of Magnetics
    • /
    • v.16 no.3
    • /
    • pp.220-224
    • /
    • 2011
  • Die-upset magnets from a mechanically-milled Pr(Co,In)$_5$-type alloy are known to have a peculiar texture; the easy magnetization axis (c-axis) is perpendicular to the pressing direction. This peculiar texture is thought to be linked closely to the anisotropic mechanical properties of Pr(Co,In)$_5$-type hexagonal compounds. The hardness of the Pr(Co,In)$_5$-type crystal was measured using selectively grown grains in an annealed $Pr_{17}Co_{82}In_1$ alloy button, and the crystallographic orientation was determined by observing the magnetic domain image. The hardness (549 VHN) on the plane with a 'cogwheel'-type domain image was significantly higher than that (510 VHN) on the plane with a 'cigar'-type domain image, indicating that the inter-layer bonding force between the (000l) basal planes is stronger than that between the (hki0) planes. This suggests that the most probable slip plane is the (hki0) plane parallel to the c-axis. During die-upsetting of the Pr(Co,In)$_5$-type alloys the deformation proceeds by (hki0) plane slip, and the c-axis rotates to ultimately become oriented perpendicular to the pressing direction. It is proposed that the peculiar texture in the die-upset Pr(Co,In)$_5$-type magnets is probably developed by slip deformation of the (hki0) plane of the Pr(Co,In)$_5$-type grains.

Fabrication of Ni substrates made by powder metallurgy and casting method (초기시편 제조법에 따른 Ni substrate의 특성비교)

  • 임준형;김규태;김정호;장석헌;주진호;나완수;지봉기;전병혁;김찬중
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.10a
    • /
    • pp.55-58
    • /
    • 2003
  • We fabricated the textured Ni substrate and evaluated the effects of processing variables on microstructural evolution and texture transformation. Ni-rods as an initial specimen were prepared by two different methods, i.e., powder metallurgy(P/M) and plasma arc melting(PAM) The texture of the substrate was characterized by pole-figure and surface condition was evaluated by atomic force microscopy. It was observed that the texture of substrate made by P/M did not significantly varied with annealing temperature of 800~120$0^{\circ}C$ and the full-width at half-maximums (FWHM) of both in-plane and out-of-plane were 9$^{\circ}$~10$^{\circ}$. On the other hand, the texture of substrate made by PAM was more dependent on the annealing temperature and the FWHMs of in-plane texture was 9$^{\circ}$~13$^{\circ}$ at the temperature range. In addition, twin texture, (221)<221>, was formed as the temperature increased further. The grain size of substrate made by P/M was smaller than that made by PAM and this difference was correlated to the microstructure of initial specimens.

  • PDF

Texture development in cold-roiled and heat-treated Ni tapes (냉간가공과 열처리한 Ni 테이프에서의 집합조직 발달)

  • 이동욱;지봉기;임준형;주진호;정충환;박순동;전병혁;홍계원;김찬중
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.535-538
    • /
    • 2002
  • Cube-textured Ni substrates for YBCO coated conductors were fabricated by cold-rolling and annealing of Ni powder compacts. To establish the optimum sintering temperature, tensile test was performed for the Ni rod sintered at various temperatures. The Ni rods prepared at above 100$0^{\circ}C$ showed good mechanical properties due to the complete densification of the Ni rods. The Ni rods were rolled to final thickness of 100 ${\mu}{\textrm}{m}$ and then annealed at 100$0^{\circ}C$ for various annealing time for texture development. The texture analysis made by 2 $\theta$ scan and pole-figure showed that the cube texture was developed in a short time of a few munitues. The FWHM of in-plane and out of plane texture of the prepared Ni tapes was 8-10$^{\circ}$. The AEM surface roughness of the Ni tapes was as smooth as 3 nm.

  • PDF

The effect of annealing condition on texture and microstructure development of Ni tapes prepared by powder metallurgy (분말야금법으로 제조한 니켈 선재에서 집합조직과 미세조직 발달에 미치는 재결정 열처리의 영향)

  • 이동욱;지봉기;임준형;주진호;정태원;박해웅;정충환;전병혁;김찬중
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.02a
    • /
    • pp.81-84
    • /
    • 2003
  • The effect of annealing condition on the texture and microstructure development in Ni tapes fabricated by cold-rolling including powder metallurgy was investigated. The Pole-figure results showed that the Ni tapes annealed at lower temperature than 50$0^{\circ}C$ were the mixture of brass deformation texture and cube texture. The specimens annealed at high temperatures had only well-developed cube texture and the FWHMs of in-plane and out-of-plane were in the range of 8-10$^{\circ}$. The degree of texture was not significantly depended on annealing temperatures. The grain morphologies of Ni tapes prepared at low temperatures showed serrated grain boundaries due to incomplete recrystallization, but the specimens prepared at high temperatures showed stabilized grain shape without serrated grain boundaries.

  • PDF