• Title/Summary/Keyword: texture parameterization

Search Result 8, Processing Time 0.025 seconds

Voxel-wise UV parameterization and view-dependent texture synthesis for immersive rendering of truncated signed distance field scene model

  • Kim, Soowoong;Kang, Jungwon
    • ETRI Journal
    • /
    • v.44 no.1
    • /
    • pp.51-61
    • /
    • 2022
  • In this paper, we introduced a novel voxel-wise UV parameterization and view-dependent texture synthesis for the immersive rendering of a truncated signed distance field (TSDF) scene model. The proposed UV parameterization delegates a precomputed UV map to each voxel using the UV map lookup table and consequently, enabling efficient and high-quality texture mapping without a complex process. By leveraging the convenient UV parameterization, our view-dependent texture synthesis method extracts a set of local texture maps for each voxel from the multiview color images and separates them into a single view-independent diffuse map and a set of weight coefficients for an orthogonal specular map basis. Furthermore, the view-dependent specular maps for an arbitrary view are estimated by combining the specular weights of each source view using the location of the arbitrary and source viewpoints to generate the view-dependent textures for arbitrary views. The experimental results demonstrate that the proposed method effectively synthesizes texture for an arbitrary view, thereby enabling the visualization of view-dependent effects, such as specularity and mirror reflection.

Local Parameterization of Polygonal Models Using Projection Level Set (투영 등위 집합을 이용한 다면체 모델의 부분 매개 변수화)

  • Lee, Yeon-Joo;Cha, Deuk-Hyun;Chang, Byung-Joon;Ihm, In-Sung
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.34 no.12
    • /
    • pp.641-655
    • /
    • 2007
  • Parameterization has been one of very important research subjects in several application areas including computer graphics. In the parameterization research, the problem of mapping 3D polygonal model to 2D plane has been studied frequently, but the previous methods often fail to handle complicated shapes of polygonal surfaces effectively as well as entail distortion between the 3D and 2D spaces. Several attempts have been made especially to reduce such distortion, but they often suffer from the problem when an arbitrary rectangular surface region on 3D model is locally parameterized. In this paper, we propose a new local parameterization scheme based on the projection level set method. This technique generates a series of equi-distanced curves on the surface region of interest, which are then used to generate effective local parameterization information. In this paper, we explain the new technique in detail and show its effectiveness by demonstrating experimental results.

Efficient Texture Parameterization of a Real Object (실세계 오브젝트의 효율적인 텍스쳐 매개변수화 방법)

  • Kim Kang-yeon;Cho Ji-ho;Lee Jae Y.;Lee Kwan H.
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.11a
    • /
    • pp.691-693
    • /
    • 2005
  • 본 연구의 목적은 오브젝트의 3차원 형상 정보와 사진이 주어졌을 때, 3D-2D 정합을 통하여 고품질의 가상모델을 생성하는데 있다. 이러한 실세계 오브젝트의 3D-2D 정합은 3차원 형상에 대응되는 2차원 이미지 정보의 매칭을 통한 텍스쳐 매개변수화 과정으로 정의 할 수 있다. 본 연구에서는 카메라 내부파라미터 검정 과정, 신뢰도가 높은 초기해 설정과정, 비선형 최적화 과정을 통한 효율적인 텍스쳐 매개변수화 기법(texture parameterization)을 제안한다.

  • PDF

Geodesics-based Shape-preserving Mesh Parameterization (직선형 측지선에 기초한 원형보전형 메쉬 파라미터화)

  • 이혜영
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.31 no.7
    • /
    • pp.414-420
    • /
    • 2004
  • Among the desirable properties of a piecewise linear parameterization, guaranteeing a one-to-one mapping (i.e., no triangle flips in the parameter plane) is often sought. A one-to-one mapping is accomplished by non-negative coefficients in the affine transformation. In the Floater's method, the coefficients were computed after the 3D mesh was flattened by geodesic polar-mapping. But using this geodesic polar map introduces unnecessary local distortion. In this paper, a simple variant of the original shape-preserving mapping technique by Floater is introduced. A new simple method for calculating barycentric coordinates by using straightest geodesics is proposed. With this method, the non-negative coefficients are computed directly on the mesh, reducing the shape distortion introduced by the previously-used polar mapping. The parameterization is then found by solving a sparse linear system, and it provides a simple and visually-smooth piecewise linear mapping, without foldovers.

Domain Mapping using Nonlinear Finite Element Formulation

  • Patro, Tangudu Srinivas;Voruganti, Hari K.;Dasgupta, Bhaskar;Basu, Sumit
    • International Journal of CAD/CAM
    • /
    • v.8 no.1
    • /
    • pp.29-36
    • /
    • 2009
  • Domain mapping is a bijective transformation of one domain to another, usually from a complicated general domain to a chosen convex domain. This is directly useful in many application problems like shape modeling, morphing, texture mapping, shape matching, remeshing, path planning etc. A new approach considering the domain as made up of structural elements, like membranes or trusses, is developed and implemented using the nonlinear finite element formulation. The mapping is performed in two stages, boundary mapping and inside mapping. The boundary of the 3-D domain is mapped to the surface of a convex domain (in this case, a sphere) in the first stage and then the displacement/distortion of this boundary is used as boundary conditions for mapping the interior of the domain in the second stage. This is a general method and it develops a bijective mapping in all cases with judicious choice of material properties and finite element analysis. The consistent global parameterization produced by this method for an arbitrary genus zero closed surface is useful in shape modeling. Results are convincing to accept this finite element structural approach for domain mapping as a good method for many purposes.

A Method of Integrating Scan Data for 3D Face Modeling (3차원 얼굴 모델링을 위한 스캔 데이터의 통합 방법)

  • Yoon, Jin-Sung;Kim, Gye-Young;Choi, Hyung-Il
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.6
    • /
    • pp.43-57
    • /
    • 2009
  • Integrating 3D data acquired in multiple views is one of the most important techniques in 3D modeling. However, the existing integration methods are sensitive to registration errors and surface scanning noise. In this paper, we propose a integration algorithm using the local surface topology. We first find all boundary vertex pairs satisfying a prescribed geometric condition in the areas between neighboring surfaces, and then separates areas to several regions by using boundary vertex pairs. We next compute best fitting planes suitable to each regions through PCA(Principal Component Analysis). They are used to produce triangles that be inserted into empty areas between neighboring surfaces. Since each regions between neighboring surfaces can be integrated by using local surface topology, a proposed method is robust to registration errors and surface scanning noise. We also propose a method integrating of textures by using parameterization technique. We first transforms integrated surface into initial viewpoints of each surfaces. We then project each textures to transformed integrated surface. They will be then assigned into parameter domain for integrated surface and be integrated according to the seaming lines for surfaces. Experimental results show that the proposed method is efficient to face modeling.

Feature Detection and Simplification of 3D Face Data with Facial Expressions

  • Kim, Yong-Guk;Kim, Hyeon-Joong;Choi, In-Ho;Kim, Jin-Seo;Choi, Soo-Mi
    • ETRI Journal
    • /
    • v.34 no.5
    • /
    • pp.791-794
    • /
    • 2012
  • We propose an efficient framework to realistically render 3D faces with a reduced set of points. First, a robust active appearance model is presented to detect facial features in the projected faces under different illumination conditions. Then, an adaptive simplification of 3D faces is proposed to reduce the number of points, yet preserve the detected facial features. Finally, the point model is rendered directly, without such additional processing as parameterization of skin texture. This fully automatic framework is very effective in rendering massive facial data on mobile devices.

Realistic 3D model generation of a real product based on 2D-3D registration (2D-3D 정합기반 실제 제품의 사실적 3D 모델 생성)

  • Kim, Gang Yeon;Son, Seong Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.11
    • /
    • pp.5385-5391
    • /
    • 2013
  • As on-line purchases is activated, customers' demand increases for the realistic and accurate digital information of a product design. In this paper, we propose a practical method that can generate a realistic 3D model of a real product using a 3D geometry obtained by a 3D scanner and its photographic images. In order to register images to the 3D geometry, the camera focal length, the CCD scanning aspect ratio and the transformation matrix between the camera coordinate and the 3D object coordinate must be determined. To perform this 2D-3D registration with consideration of computational complexity, a three-step method is applied, which consists of camera calibration, determination of a temporary optimum translation vector (TOTV) and nonlinear optimization for three rotational angles. A case study for a metallic coated industrial part, of which the colour appearance is hardly obtained by a 3D colour scanner has performed to demonstrate the effectiveness of the proposed method.