• Title/Summary/Keyword: texture map

Search Result 208, Processing Time 0.029 seconds

Depth Extraction From Focused Images Using The Error Interpolation (오류 보정을 이용한 초점 이미지들로부터의 깊이 추출)

  • 김진사;노경완;김충원
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.627-630
    • /
    • 1999
  • For depth extraction from the focus and recovery the shape, determination of criterion function for focus measure and size of the criterion window are very important. However, Texture, illumination, and magnification have an effect on focus measure. For that reason, depth map has a partial high and low peak. In this paper, we propose a depth extraction method from focused images using the error interpolation. This method is modified the error depth into mean value between two normal depth in order to improve the depth map.

  • PDF

Enhanced Deep Feature Reconstruction : Texture Defect Detection and Segmentation through Preservation of Multi-scale Features (개선된 Deep Feature Reconstruction : 다중 스케일 특징의 보존을 통한 텍스쳐 결함 감지 및 분할)

  • Jongwook Si;Sungyoung Kim
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.6
    • /
    • pp.369-377
    • /
    • 2023
  • In the industrial manufacturing sector, quality control is pivotal for minimizing defect rates; inadequate management can result in additional costs and production delays. This study underscores the significance of detecting texture defects in manufactured goods and proposes a more precise defect detection technique. While the DFR(Deep Feature Reconstruction) model adopted an approach based on feature map amalgamation and reconstruction, it had inherent limitations. Consequently, we incorporated a new loss function using statistical methodologies, integrated a skip connection structure, and conducted parameter tuning to overcome constraints. When this enhanced model was applied to the texture category of the MVTec-AD dataset, it recorded a 2.3% higher Defect Segmentation AUC compared to previous methods, and the overall defect detection performance was improved. These findings attest to the significant contribution of the proposed method in defect detection through the reconstruction of feature map combinations.

Adaptive Iterative Depeckling of SAR Imagery

  • Lee, Sang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.5
    • /
    • pp.455-464
    • /
    • 2007
  • Lee(2007) suggested the Point-Jacobian iteration MAP estimation(PJIMAP) for noise removal of the images that are corrupted by multiplicative speckle noise. It is to find a MAP estimation of noisy-free imagery based on a Bayesian model using the lognormal distribution for image intensity and an MRF for image texture. When the image intensity is logarithmically transformed, the speckle noise is approximately Gaussian additive noise, and it tends to a normal probability much faster than the intensity distribution. The MRF is incorporated into digital image analysis by viewing pixel types as states of molecules in a lattice-like physical system. In this study, the MAP estimation is computed by the Point-Jacobian iteration using adaptive parameters. At each iteration, the parameters related to the Bayesian model are adaptively estimated using the updated information. The results of the proposed scheme were compared to them of PJIMAP with SAR simulation data generated by the Monte Carlo method. The experiments demonstrated an improvement in relaxing speckle noise and estimating noise-free intensity by using the adaptive parameters for the Ponit-Jacobian iteration.

WAVELET-BASED FOREST AREAS CLASSIFICATION BY USING HIGH RESOLUTION IMAGERY

  • Yoon Bo-Yeol;Kim Choen
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.698-701
    • /
    • 2005
  • This paper examines that is extracted certain information in forest areas within high resolution imagery based on wavelet transformation. First of all, study areas are selected one more species distributed spots refer to forest type map. Next, study area is cut 256 x 256 pixels size because of image processing problem in large volume data. Prior to wavelet transformation, five texture parameters (contrast, dissimilarity, entropy, homogeneity, Angular Second Moment (ASM≫ calculated by using Gray Level Co-occurrence Matrix (GLCM). Five texture images are set that shifting window size is 3x3, distance .is 1 pixel, and angle is 45 degrees used. Wavelet function is selected Daubechies 4 wavelet basis functions. Result is summarized 3 points; First, Wavelet transformation images derived from contrast, dissimilarity (texture parameters) have on effect on edge elements detection and will have probability used forest road detection. Second, Wavelet fusion images derived from texture parameters and original image can apply to forest area classification because of clustering in Homogeneous forest type structure. Third, for grading evaluation in forest fire damaged area, if data fusion of established classification method, GLCM texture extraction concept and wavelet transformation technique effectively applied forest areas (also other areas), will obtain high accuracy result.

  • PDF

Textural Properties of Jumbo Squid Kamaboko as Affected by Edible Starches (대왕 오징어 연제품의 Texture에 영향을 미치는 전분의 종류)

  • LEE Nahm-Gull
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.33 no.6
    • /
    • pp.591-596
    • /
    • 2000
  • The effect of starches such as potato, corn and wheat starch on the rheological properties of ocean jumbo squid kamaboko was investigated. Changes in the water holding capacity and color values of those kamaboko gels was also studied using the maximum gel strength endowing starch, Wheat starch could ive the better water holding capacity and breaking stress than potato or corn starch within $10{\%}$ additional level but corn starch resulted the highest those value at $20{\%}$ added. Wheat starch had higher level of breaking strain and jelly strength at $10{\%}$ then in descending order were corn starch, potato starch. But those starches were decreased after $15{\%}$ level. Texture map showed the simple rheological properties of each starches heat gel with jumbo squid kamaboko, Corn starch map showed more tough and brittle than the other. Potato starch map showed more elastic gel than corn starch. Wheat starch map could make elastic-mushy gel. There was no significant color differences of each starches but the whiteness of each starch showed increase when the starch rate was increased.

  • PDF

Despeckling and Classification of High Resolution SAR Imagery (고해상도 SAR 영상 Speckle 제거 및 분류)

  • Lee, Sang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.5
    • /
    • pp.455-464
    • /
    • 2009
  • Lee(2009) proposed the boundary-adaptive despeckling method using a Bayesian model which is based on the lognormal distribution for image intensity and a Markov random field(MRF) for image texture. This method employs the Point-Jacobian iteration to obtain a maximum a posteriori(MAP) estimate of despeckled imagery. The boundary-adaptive algorithm is designed to use less information from more distant neighbors as the pixel is closer to boundary. It can reduce the possibility to involve the pixel values of adjacent region with different characteristics. The boundary-adaptive scheme was comprehensively evaluated using simulation data and the effectiveness of boundary adaption was proved in Lee(2009). This study, as an extension of Lee(2009), has suggested a modified iteration algorithm of MAP estimation to enhance computational efficiency and to combine classification. The experiment of simulation data shows that the boundary-adaption results in yielding clear boundary as well as reducing error in classification. The boundary-adaptive scheme has also been applied to high resolution Terra-SAR data acquired from the west coast of Youngjong-do, and the results imply that it can improve analytical accuracy in SAR application.

Effect of Carbon on Microstructure and Texture in Low Carbon Steels (저탄소강의 미세조직과 집합조직에 대한 탄소의 영향)

  • Jeong, Woo Chang
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.27 no.2
    • /
    • pp.79-89
    • /
    • 2014
  • The effect of carbon on the microstructure and texture of low carbon steels was investigated in a series of 1.6 Mn-0.3Cr-0.2Mo-0.001B steels with carbon ranging from 0.021 to 0.048%. Intensity of {111} orientation increased with decreasing the carbon content, resulting in the increase in $r_m$ value. The highest $r_m$ value of 1.30 was obtained in 0.021%C steel annealed at $820{\sim}850^{\circ}C$ according to the typical galvannealing heat cycle. Martensite volume fraction was not substantially affected by the annealing temperature. It was found that the fine and uniformly distributed martensite particles which were present in amounts of about 5% volume fraction were desirable for the highest $r_m$ value. The other factor affecting the high $r_m$ value was the preferred epitaxial growth of retained ferrite with {111} orientation into austenite during cooling.

Video Segmentation Using DCT and Guided Filter in real time (DCT와 Guided 필터를 이용한 실시간 영상 분류)

  • Shin, Hyunhak;Lee, Zucheul;Kim, Wonha
    • Journal of Broadcast Engineering
    • /
    • v.20 no.5
    • /
    • pp.718-727
    • /
    • 2015
  • In this paper, we present a novel segmentation method that can extract new foreground objects from a current frame in real-time. It is performed by detecting differences between the current frame and reference frame taken from a fixed camera. We minimize computing complexity for real-time video processing. First DCT (Discrete Cosine Transform) is utilized to generate rough binary segmentation maps where foreground and background regions are separated. DCT shows better result of texture analysis than previous methods where texture analysis is performed in spatial domain. It is because texture analysis in frequency domain is easier than that in special domain and intensity and texture in DCT are taken into account at the same time. We maximize run-time efficiency of DCT by considering color information to analyze object region prior to DCT process. Last we use Guided filter for natural matting of the generated binary segmentation map. In general, Guided filter can enhance quality of intermediate result by incorporating guidance information. However, it shows some limitations in homogeneous area. Therefore, we present an additional method which can overcome them.

Multi-scale Texture Synthesis (다중 스케일 텍스처 합성)

  • Lee, Sung-Ho;Park, Han-Wook;Lee, Jung;Kim, Chang-Hun
    • Journal of the Korea Computer Graphics Society
    • /
    • v.14 no.2
    • /
    • pp.19-25
    • /
    • 2008
  • We synthesize a texture with different structures at different scales. Our technique is based on deterministic parallel synthesis allowing real-time processing on a GPU. A new coordinate transformation operator is used to construct a synthesized coordinate map based on different exemplars at different scales. The runtime overhead is minimal because this operator can be precalculated as a small lookup table. Our technique is effective for upsampling texture-rich images, because the result preserves texture detail well. In addition, a user can design a texture by coloring a low-resolution control image. This design tool can also be used for the interactive synthesis of terrain in the style of a particular exemplar, using the familiar 'raise and lower' airbrush to specify elevation.

  • PDF

Resolution-independent Up-sampling for Depth Map Using Fractal Transforms

  • Liu, Meiqin;Zhao, Yao;Lin, Chunyu;Bai, Huihui;Yao, Chao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.6
    • /
    • pp.2730-2747
    • /
    • 2016
  • Due to the limitation of the bandwidth resource and capture resolution of depth cameras, low resolution depth maps should be up-sampled to high resolution so that they can correspond to their texture images. In this paper, a novel depth map up-sampling algorithm is proposed by exploiting the fractal internal self-referential feature. Fractal parameters which are extracted from a depth map, describe the internal self-referential feature of the depth map, do not introduce inherent scale and just retain the relational information of the depth map, i.e., fractal transforms provide a resolution-independent description for depth maps and could up-sample depth maps to an arbitrary high resolution. Then, an enhancement method is also proposed to further improve the performance of the up-sampled depth map. The experimental results demonstrate that better quality of synthesized views is achieved both on objective and subjective performance. Most important of all, arbitrary resolution depth maps can be obtained with the aid of the proposed scheme.