• Title/Summary/Keyword: texture hardening

Search Result 43, Processing Time 0.027 seconds

Multiscale modeling of elasto-viscoplastic polycrystals subjected to finite deformations

  • Matous, Karel;Maniatty, Antoinette M.
    • Interaction and multiscale mechanics
    • /
    • v.2 no.4
    • /
    • pp.375-396
    • /
    • 2009
  • In the present work, the elasto-viscoplastic behavior, interactions between grains, and the texture evolution in polycrystalline materials subjected to finite deformations are modeled using a multiscale analysis procedure within a finite element framework. Computational homogenization is used to relate the grain (meso) scale to the macroscale. Specifically, a polycrystal is modeled by a material representative volume element (RVE) consisting of an aggregate of grains, and a periodic distribution of such unit cells is considered to describe material behavior locally on the macroscale. The elastic behavior is defined by a hyperelastic potential, and the viscoplastic response is modeled by a simple power law complemented by a work hardening equation. The finite element framework is based on a Lagrangian formulation, where a kinematic split of the deformation gradient into volume preserving and volumetric parts together with a three-field form of the Hu-Washizu variational principle is adopted to create a stable finite element method. Examples involving simple deformations of an aluminum alloy are modeled to predict inhomogeneous fields on the grain scale, and the macroscopic effective stress-strain curve and texture evolution are compared to those obtained using both upper and lower bound models.

Nano-Wear and Friction of Magnetic Recording Hard Disk by Contact Start/Stop Test

  • Kim, Woo Seok;Hwang, Pyung;Kim, Jang-Kyo
    • KSTLE International Journal
    • /
    • v.1 no.1
    • /
    • pp.12-20
    • /
    • 2000
  • Nano-wear and friction of carbon overcoated laser-textured and mechanically-textured computer hard disk were characterised after contact start/stop (CSS) wear test. Various analytical and mechanical testing techniques were employed to study the changes in topography, roughness, chemical elements, mechanical properties and friction characteristics of the coating arising from the contact start/stop wear test These techniques include: the atomic force microscopy (AFM), the continuous nano-indentation test, the nano-scratch test, the time-of-flight secondary ion mass spectroscopy (TOF-SIMS) and the auger electron spectroscopy (AES). It was shown that the surface roughness of the laser-textured (LT) bump and mechanically textured (MT) Bone was reduced approximately am and 7nm, respectively, after the CSS wear test. The elastic modulus and hardness values increased after the CSS test, indicating straining hardening of the top coating layer, A critical load was also identified fer adhesion failure between the magnetic layer and the Ni-P layer, The TOF-SIMS analysis also revealed some reduction in the intensity of C and $C_2$$F_59$, confirming the wear of lubricant elements on the coating surface.

  • PDF

Texture Evolution of Extruded AZ80 Mg Alloy under Various Compressive Forming Conditions (AZ80 마그네슘 합금 압출재의 압축 성형조건에 따른 방위특성 분석)

  • Yoon, J.H.;Lee, S.I.;Lee, J.H.;Park, S.H.;Cho, J.H.
    • Transactions of Materials Processing
    • /
    • v.21 no.4
    • /
    • pp.240-245
    • /
    • 2012
  • With the increasing demand for light-weight materials to reduce fuel consumption, the automobile industry has extensively studied magnesium alloys which are light weight metals. The intrinsic poor formability and poor ductility at ambient temperature due to the hexagonal close-packed (HCP) crystal structure and the associated insufficient number of independent slip systems restricts the practical usage of these alloys. Hot working of magnesium alloys using a forging or extrusion enables net-shape manufacturing with enhanced formability and ductility since there are several operative non-basal slip systems in addition to basal slip plane, which increases the workability. In this research, the thermomechanical properties of AZ80 Mg alloy were obtained by compression testing at the various temperatures and strain rates. Optical microscopy and EBSD were used to study the microstructural behavior such as misorientation distribution and dynamic recrystallization. The results were correlated to the hardening and the softening of the alloy. The experimental data in conjunction with a physical explanation provide the optimal conditions for net-shape forging under hot or warm temperatures through control of the grain refinement and the working conditions.

Effects of Freezing and Microwave Heating on the Textural Characteristics of Nonwaxy Rice Flour Gels and Rice Cake(Injolmi) (동결 및 마이크로파 가열이 멥쌀가루겔 및 인절미의 조직 특성에 미치는 영향)

  • 고하영
    • Food Science and Preservation
    • /
    • v.6 no.1
    • /
    • pp.81-86
    • /
    • 1999
  • The textural characteristics of nonxaxy rice flour gels and rice cake(Injolmi) with different water contents and additives were evaluated after freezing and microwave heating. As moisture content of rice flour gels increased from 45% to 55%, its hardness and gumminess decreased, but adhesive and cohesiveness had no significant difference. Microwave heating did not markedly affect the texture but frozen storage was very effective to prevent the hardening of products. Hardness of reheated rice gels increased more rapidly in non-packaged sample than in PE wrap film and affected by storage time of 24hrs at 20$^{\circ}C$. As sugar content of rice flour gels increased from 0% to 10%, its hardness, adhesiveness, and gumminess decreased, while cohesiveness did not change.

  • PDF

Evaluation of Mechanical Properties for AZ31 Magnesium Alloy(1) (AZ31 마그네슘 합금 판재의 기계적 특성 평가(1))

  • Won S.Y.;Oh S.K.;Osakada Kozo;Park J.K.;Kim Y.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.53-56
    • /
    • 2004
  • The mechanical properties and optical micrographs are studied for rolled magnesium alloy sheet with hexagonal close packed structure(HCP) at room and elevated temperatures. Tensile properties such as tensile strength, elongation, R-value and n-value are also measured for AZ31 magnesium alloy. Magnesium with strong texture of basal plane parallel to the rolling direction usually has high R-value and plastic anisotropy at room temperature. As temperature increases, the R-value for AZ31 magnesium sheet decreases. In addition, the AZ31 sheet becomes isotropy and recrystallization above $200^{\circ}C$. Formability of magnesium alloy sheets remarkably poor at room temperature is improved by increasing temperature. Sheet forming of magnesium alloy is practically possible only at high temperature range where plastic anisotropy disappears.

  • PDF

Effect of {10ī2} Twinning Characteristics on the Deformation Behavior of Rolled AZ31 Mg Alloy ({10ī2} 쌍정 특성이 AZ31 마그네슘 합금 압연재의 변형거동에 미치는 영향)

  • Park, S.H.;Hong, S.G.;Lee, J.H.;Lee, C.S.
    • Transactions of Materials Processing
    • /
    • v.19 no.7
    • /
    • pp.416-422
    • /
    • 2010
  • The $\{10\bar{1}2\}$ twinning characteristics, such as active twin variants, volume fraction of twins with strain, twin morphology, twin texture and angle relationship between twins, were dependent on the activation mode (i.e., tension parallel to the caxis or compression perpendicular to the c-axis). The selection criterion of active twin variants was governed by the Schmid law. This activation of selected twin variants depending on the activation mode consequently caused a totally different plastic deformation behavior in two activation modes. The differences in the deformation characteristics, such as flow stress and work hardening rate, between both activation modes were explained in relation with activation stresses for slips and twinning, relative activities of twinning and slips during plastic deformation, grain refining effect by twin boundaries (Hall-Petch effect), and twinning-induced change in activities of slips.

Development of Textures and Microstructures during Compression in a Hot-Extruded AZ31 Mg Alloy (고온압출한 AZ 31 마그네슘 합금의 압축변형 중 집합조직과 미세조직의 발달)

  • Jung, Byung Jo;Lee, Myung Jae;Park, Yong-Bum
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.4
    • /
    • pp.305-314
    • /
    • 2010
  • The development of textures and microstructures during plastic deformation in a hot-extruded AZ 31 Mg alloy was investigated using a compression test with such parameters as deformation temperature, strain rate. It was observed from true stress-strain curves that twinning involves changes of the flow stresses. In the early stages of deformation at temperatures lower than $200^{\circ}C$, the occurrence of twins resulted in a decrease of the work-hardening rate, which increased drastically at a true strain of -0.05. The evolution of the deformation textures were assessed with the aid of EBSD analyses in terms of the competition between twinning and slip activity.

Investigation of the changes in texture of soybean sprout depending on the heating conditions in sous-vide and conventional hot water cooking (Sous-vide가열과 열탕가열 조건에 따른 콩나물 머리와 줄기의 조직감 변화에 관한 연구)

  • Lee, Yun Ju;Jung, Hwabin;Yoon, Won Byong
    • Journal of Applied Biological Chemistry
    • /
    • v.61 no.3
    • /
    • pp.219-226
    • /
    • 2018
  • The purpose of this study was to investigate the effect of thermal treatments, such as a sous-vide and a conventional hot water cooking, on the texture changes of soybean sprout. A novel method to measure texture properties of soybean sprout have been determined because of the irregular geometry of soybean sprout. The shape of cotyledon of bean spout was accurately analyzed using an image processing and a geometry model. To minimize the effect of the contact area on the texture measurement, a blade type of probe was selected for the measurement. True stress was evaluated to reflect the shape changes during deformation, and demonstrated that the measurement accurately distinguished the effect of thermal treatment on the texture. Different heating time (i.e., 0, 10, 20, and 30 min) was applied for both sous-vide and conventional cooking. Thermal processing caused hardening of textures for both cotyledon and hypocotyl of soybean sprout. The conventional cooking method showed higher stress values than those of sous-vide cooking. Sprouts cooked by sous-vide released the moisture after thermal processing while sprout cooked by a conventional water bath method could hold the moisture content during thermal processing. The soybean sprouts treated by conventional cooking method showed a higher score in sensory evaluation.

An Fundamental Study on the Earth Wall Material Development by using of Lime Composition and Earth (석회복합체와 흙을 이용한 흙벽체 재료 개발에 관한 기초적 연구)

  • Hwang, Hey zoo;Kang, Nam Yi
    • KIEAE Journal
    • /
    • v.10 no.5
    • /
    • pp.115-121
    • /
    • 2010
  • Lime was the solidifier mostly used at the fields of construction and civil works in the past. however, the development of Portland cement remarkably reduced the use of it. Recently as the concernment on circumstances gets higher, lime wined attention again as an eco-friendly material and was used at earth-using construction. This study examined the physical and chemical capacity of lime complexes with lime capacity improved, and performed fundamental study on the way to concretize by mixing it with earth. As a result, lime complex pressure strength was lower than cement pressure strength but it showed the possibility that its strength was improved by W/B control. The measurement of XRD after paste formation confirmed a compound generated by the reaction of Ca2+ion and Si, Al, and Fe from pozzolan reaction. A earth wall experiment by using lime complexes and earth showed that the higher, WB or the lower the quantity of unit combined materials, the lower the pressure strength was. The maximum pressure strength was maximum 11MPa when the quantity of unit combined materials was 450. It is because the composed earth particles had a high content of micro powder less than silt, so a lot of combination are demanded to secure fluidity. As a result of peptization experiment, after hardening, the material was not dissolved, which informed of the possibility of use as an outer subsidiary material. If the material is hardened by mold formation method, natural hardening crack appears. Cast expresses smart surface quality and enables to design for multiple purpose. The result shows the possibility of construction of low-story structures by using earth wall made of lime complexes and earth.

Quality Characteristics of $Sulgidduck$ Added with Purple Sweet Potato (자색고구마를 첨가한 설기떡의 품질 특성)

  • Park, Young-Mi;Kim, Myeong-Hee;Yoon, Hye-Hyun
    • Culinary science and hospitality research
    • /
    • v.18 no.1
    • /
    • pp.54-64
    • /
    • 2012
  • The purpose of this study is to develop $Sulgidduk$ which meets the consumers' taste by using cooked purple sweet potato. The samples of $Sulgidduk$ were prepared with different ratios of cooked purple sweet potato(0, 10, 20, 30, 40%) and analyzed for moisture content, Hunter's color value and texture characteristics and sensory evaluation. The moisture contents of the samples ranged 40.83% to 44.91% The L-value and b-value decreased, while a-value increased, with increasing amounts of cooked purple sweet potato. In the mechanical evaluation of physical properties, hardness, adhesiveness, springiness, gumminess and cohesiveness showed no significant difference with the increasing amount of cooked purple sweet potato. However, chewiness decreased significantly with the increasing amount of cooked purple sweet potato. Based on the quantitative descriptive sensory evaluations on $Sulgidduk$ samples, purple color, sweet potato flavor and taste, sweetness, and moistness significantly increased, while hardness decreased significantly with the increasing amount of cooked purple sweet potato. $Sulgidduk$ added 40% cooked purple sweet potato showed the highest in overall acceptability and the slowest hardening in the textural changes during storage.

  • PDF