• Title/Summary/Keyword: texture features

Search Result 491, Processing Time 0.022 seconds

MALICIOUS URL RECOGNITION AND DETECTION USING ATTENTION-BASED CNN-LSTM

  • Peng, Yongfang;Tian, Shengwei;Yu, Long;Lv, Yalong;Wang, Ruijin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.11
    • /
    • pp.5580-5593
    • /
    • 2019
  • A malicious Uniform Resource Locator (URL) recognition and detection method based on the combination of Attention mechanism with Convolutional Neural Network and Long Short-Term Memory Network (Attention-Based CNN-LSTM), is proposed. Firstly, the WHOIS check method is used to extract and filter features, including the URL texture information, the URL string statistical information of attributes and the WHOIS information, and the features are subsequently encoded and pre-processed followed by inputting them to the constructed Convolutional Neural Network (CNN) convolution layer to extract local features. Secondly, in accordance with the weights from the Attention mechanism, the generated local features are input into the Long-Short Term Memory (LSTM) model, and subsequently pooled to calculate the global features of the URLs. Finally, the URLs are detected and classified by the SoftMax function using global features. The results demonstrate that compared with the existing methods, the Attention-based CNN-LSTM mechanism has higher accuracy for malicious URL detection.

Masked Face Recognition via a Combined SIFT and DLBP Features Trained in CNN Model

  • Aljarallah, Nahla Fahad;Uliyan, Diaa Mohammed
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.6
    • /
    • pp.319-331
    • /
    • 2022
  • The latest global COVID-19 pandemic has made the use of facial masks an important aspect of our lives. People are advised to cover their faces in public spaces to discourage illness from spreading. Using these face masks posed a significant concern about the exactness of the face identification method used to search and unlock telephones at the school/office. Many companies have already built the requisite data in-house to incorporate such a scheme, using face recognition as an authentication. Unfortunately, veiled faces hinder the detection and acknowledgment of these facial identity schemes and seek to invalidate the internal data collection. Biometric systems that use the face as authentication cause problems with detection or recognition (face or persons). In this research, a novel model has been developed to detect and recognize faces and persons for authentication using scale invariant features (SIFT) for the whole segmented face with an efficient local binary texture features (DLBP) in region of eyes in the masked face. The Fuzzy C means is utilized to segment the image. These mixed features are trained significantly in a convolution neural network (CNN) model. The main advantage of this model is that can detect and recognizing faces by assigning weights to the selected features aimed to grant or provoke permissions with high accuracy.

Texture Feature-Based Language Identification Using Gabor Feature and Wavelet-Domain BDIP and BVLC Features (Gabor 특징과 웨이브렛 영역의 BDIP와 BVLC 특징을 이용한 질감 특징 기반 언어 인식)

  • Jang, Ick-Hoon;Lee, Woo-Shin;Kim, Nam-Chul
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.4
    • /
    • pp.76-85
    • /
    • 2011
  • In this paper, we propose a texture feature-based language identification using Gabor feature and wavelet-domain BDIP (block difference of inverse probabilities) and BVLC (block variance of local correlation coefficients) features. In the proposed method, Gabor and wavelet transforms are first applied to a test image. The wavelet subbands are next denoised by Donoho's soft-thresholding. The magnitude operator is then applied to the Gabor image and the BDIP and BVLC operators to the wavelet subbands. Moments for Gabor magnitude image and each subband of BDIP and BVLC are computed and fused into a feature vector. In classification, the WPCA (whitened principal component analysis) classifier, which is usually adopted in the face identification, searches the training feature vector most similar to the test feature vector. Experimental results show that the proposed method yields excellent language identification with rather low feature dimension for a document image DB.

Object Tracking Using Particle Filters in Moving Camera (움직임 카메라 환경에서 파티클 필터를 이용한 객체 추적)

  • Ko, Byoung-Chul;Nam, Jae-Yeal;Kwak, Joon-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.5A
    • /
    • pp.375-387
    • /
    • 2012
  • This paper proposes a new real-time object tracking algorithm using particle filters with color and texture features in moving CCD camera images. If the user selects an initial object, this region is declared as a target particle and an initial state is modeled. Then, N particles are generated based on random distribution and CS-LBP (Centre Symmetric Local Binary Patterns) for texture model and weighted color distribution is modeled from each particle. For observation likelihoods estimation, Bhattacharyya distance between particles and their feature models are calculated and this observation likelihoods are used for weights of individual particles. After weights estimation, a new particle which has the maximum weight is selected and new particles are re-sampled using the maximum particle. For performance comparison, we tested a few combinations of features and particle filters. The proposed algorithm showed best object tracking performance when we used color and texture model simultaneously for likelihood estimation.

Content-based Image Retrieval Using Texture Features Extracted from Local Energy and Local Correlation of Gabor Transformed Images

  • Bu, Hee-Hyung;Kim, Nam-Chul;Lee, Bae-Ho;Kim, Sung-Ho
    • Journal of Information Processing Systems
    • /
    • v.13 no.5
    • /
    • pp.1372-1381
    • /
    • 2017
  • In this paper, a texture feature extraction method using local energy and local correlation of Gabor transformed images is proposed and applied to an image retrieval system. The Gabor wavelet is known to be similar to the response of the human visual system. The outputs of the Gabor transformation are robust to variants of object size and illumination. Due to such advantages, it has been actively studied in various fields such as image retrieval, classification, analysis, etc. In this paper, in order to fully exploit the superior aspects of Gabor wavelet, local energy and local correlation features are extracted from Gabor transformed images and then applied to an image retrieval system. Some experiments are conducted to compare the performance of the proposed method with those of the conventional Gabor method and the popular rotation-invariant uniform local binary pattern (RULBP) method in terms of precision vs recall. The Mahalanobis distance is used to measure the similarity between a query image and a database (DB) image. Experimental results for Corel DB and VisTex DB show that the proposed method is superior to the conventional Gabor method. The proposed method also yields precision and recall 6.58% and 3.66% higher on average in Corel DB, respectively, and 4.87% and 3.37% higher on average in VisTex DB, respectively, than the popular RULBP method.

Performance Analysis of Modified LLAH Algorithm under Gaussian Noise (가우시안 잡음에서 변형된 LLAH 알고리즘의 성능 분석)

  • Ryu, Hosub;Park, Hanhoon
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.8
    • /
    • pp.901-908
    • /
    • 2015
  • Methods of detecting, describing, matching image features, like corners and blobs, have been actively studied as a fundamental step for image processing and computer vision applications. As one of feature description/matching methods, LLAH(Locally Likely Arrangement Hashing) describes image features based on the geometric relationship between their neighbors, and thus is suitable for scenes with poor texture. This paper presents a modified LLAH algorithm, which includes the image features themselves for robustly describing the geometric relationship unlike the original LLAH, and employes a voting-based feature matching scheme that makes feature description much simpler. Then, this paper quantitatively analyzes its performance with synthetic images in the presence of Gaussian noise.

Projected Local Binary Pattern based Two-Wheelers Detection using Adaboost Algorithm

  • Lee, Yeunghak;Kim, Taesun;Shim, Jaechang
    • Journal of Multimedia Information System
    • /
    • v.1 no.2
    • /
    • pp.119-126
    • /
    • 2014
  • We propose a bicycle detection system riding on people based on modified projected local binary pattern(PLBP) for vision based intelligent vehicles. Projection method has robustness for rotation invariant and reducing dimensionality for original image. The features of Local binary pattern(LBP) are fast to compute and simple to implement for object recognition and texture classification area. Moreover, We use uniform pattern to remove the noise. This paper suggests that modified LBP method and projection vector having different weighting values according to the local shape and area in the image. Also our system maintains the simplicity of evaluation of traditional formulation while being more discriminative. Our experimental results show that a bicycle and motorcycle riding on people detection system based on proposed PLBP features achieve higher detection accuracy rate than traditional features.

  • PDF

Using Radon Transform for Image Retrieval (영상 검색을 위한 Radon 변형의 이용)

  • Seo, Jeong-Man
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.6
    • /
    • pp.65-71
    • /
    • 2009
  • The basic features in the indexing and retrieval of the image is used color, shape, and texture in traditional image retrieval method. We do not use these features and offers a new way. For content-based video indexing and retrieval, visual features used to measure the similarity of the geometric method is presented. This method is called the Radon transform. Without separation, this method is calculated based on the geometric distribution of image. In the experiment has a very good search results.

GLIBP: Gradual Locality Integration of Binary Patterns for Scene Images Retrieval

  • Bougueroua, Salah;Boucheham, Bachir
    • Journal of Information Processing Systems
    • /
    • v.14 no.2
    • /
    • pp.469-486
    • /
    • 2018
  • We propose an enhanced version of the local binary pattern (LBP) operator for texture extraction in images in the context of image retrieval. The novelty of our proposal is based on the observation that the LBP exploits only the lowest kind of local information through the global histogram. However, such global Histograms reflect only the statistical distribution of the various LBP codes in the image. The block based LBP, which uses local histograms of the LBP, was one of few tentative to catch higher level textural information. We believe that important local and useful information in between the two levels is just ignored by the two schemas. The newly developed method: gradual locality integration of binary patterns (GLIBP) is a novel attempt to catch as much local information as possible, in a gradual fashion. Indeed, GLIBP aggregates the texture features present in grayscale images extracted by LBP through a complex structure. The used framework is comprised of a multitude of ellipse-shaped regions that are arranged in circular-concentric forms of increasing size. The framework of ellipses is in fact derived from a simple parameterized generator. In addition, the elliptic forms allow targeting texture directionality, which is a very useful property in texture characterization. In addition, the general framework of ellipses allows for taking into account the spatial information (specifically rotation). The effectiveness of GLIBP was investigated on the Corel-1K (Wang) dataset. It was also compared to published works including the very effective DLEP. Results show significant higher or comparable performance of GLIBP with regard to the other methods, which qualifies it as a good tool for scene images retrieval.

Highly Flexible Piezoelectric Tactile Sensor based on PZT/Epoxy Nanocomposite for Texture Recognition (텍스처 인지를 위한 PZT/Epoxy 나노 복합소재 기반 유연 압전 촉각센서)

  • Yulim Min;Yunjeong Kim;Jeongnam Kim;Saerom Seo;Hye Jin Kim
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.2
    • /
    • pp.88-94
    • /
    • 2023
  • Recently, piezoelectric tactile sensors have garnered considerable attention in the field of texture recognition owing to their high sensitivity and high-frequency detection capability. Despite their remarkable potential, improving their mechanical flexibility to attach to complex surfaces remains challenging. In this study, we present a flexible piezoelectric sensor that can be bent to an extremely small radius of up to 2.5 mm and still maintain good electrical performance. The proposed sensor was fabricated by controlling the thickness that induces internal stress under external deformation. The fabricated piezoelectric sensor exhibited a high sensitivity of 9.3 nA/kPa ranging from 0 to 10 kPa and a wide frequency range of up to 1 kHz. To demonstrate real-time texture recognition by rubbing the surface of an object with our sensor, nine sets of fabric plates were prepared to reflect their material properties and surface roughness. To extract features of the objects from the detected sensing data, we converted the analog dataset to short-term Fourier transform images. Subsequently, texture recognition was performed using a convolutional neural network with a classification accuracy of 97%.