DOI QR코드

DOI QR Code

Using Radon Transform for Image Retrieval

영상 검색을 위한 Radon 변형의 이용

  • 서정만 (한국재활복지대학 컴퓨터게임개발과)
  • Published : 2009.06.30

Abstract

The basic features in the indexing and retrieval of the image is used color, shape, and texture in traditional image retrieval method. We do not use these features and offers a new way. For content-based video indexing and retrieval, visual features used to measure the similarity of the geometric method is presented. This method is called the Radon transform. Without separation, this method is calculated based on the geometric distribution of image. In the experiment has a very good search results.

전통적인 영상 검색 방법은 영상의 색인화와 검색에서 기본적인 특징으로 컬러, 모양, 그리고 질감 들을 사용한다. 우리는 이러한 특징들을 사용하지 않는 새로운 방법을 제시한다. 내용 기반 영상의 색인화와 검색을 위한 유사성 측정에 기하학적 방법을 사용한 시각적 특징을 제시한다. 이 방법은 Radon 변형이라고 한다. 이 방법은 복잡한 분리 방법이 없이 영상의 기하학적 분포에 따라 계산한다. 실험에서도 매우 뛰어난 검색 효과를 보이고 있다.

Keywords

References

  1. 박구락, "데이터마이닝을 위한 내용기반 영상검색 기술", 한국 인터넷 정보학회, 제3권, 제4호, 23-31쪽, 2002년 12월
  2. 천영덕, 성중기, 김남철, "칼라 및 다해상도 질감 특징 결합에 의한 영상검색", 한국통신학회논문지, 제30권, 제9C호, 930-938쪽, 2005년 9월
  3. M. Flickner and al. Query by image and video content: the qbic system. IEEE Computer, Vol. 28, No. 9, pp. 23-32, 1995.
  4. A. Pentland, R. Picard, and S. Sclaro, Photobook: Content-based manipulation of image databases. SPIE Storage and Retrieval for Image and Video Databases, II(2185), Feb. 1994.
  5. A. Gupta and al. The virage image search engine: an open framework for image management. SPIE Storage and Retrieval for Image and Video Databases, 2670, 1996.
  6. T. Huang, S. Mehrotra, and K. Ramchandran. Multimedia analysis and retrieval system (mars) project. Proceedings of the 33rd Annual Clinic on Library Application of Data Processing - Digital Image Access and Retrieval, 1996.
  7. S. Sclaro, L. Taycher, and M. La Cascia, Imagerover: A content-based image browser for the world wide web. IEEE Workshop on Content-based Access of Image and Video Libraries (CBAIVL), june 1997.
  8. C. Nastar, M. Mitschke, C. Meilhac, and N. Boujemaa. Surmage: A flexible content-based image retrieval system. ACM Multimedia Conference Proceedings, Bristol, UK, 1998.
  9. I. J. Cox, M. L. Miller, and T. P. Minka. The bayesian image retrieval system, pichunter: Theory, implementation and psychological experiments. IEEE Transactions on Image Processing, Vol. 9, No. 1, pp. 20-37, 2000. https://doi.org/10.1109/83.817596
  10. J. Fauqueur. Contributions to image retrieval by their visual components. PhD Thesis, UVSQ - INRIA, (in french), 2003. http://www.rocq.inria.fr/~fauqueur/recherche/.
  11. B. Moghaddam, H. Biermann, and D. Margaritis. Dening image content with multiple regions of interest. IEEE Workshop on Content-Based Access of Image and Video Libraries (CBAIVL), 1999.
  12. J. Malki, N. Boujemaa, C. Nastar, and A. Winter. Region queries without segmentation for image retrieval by content. In Proc. of International Conference on Visual Information System (VIS), pp. 115-122, 1999.
  13. A. DelBimbo and E. Vicario. Using weighted spatial relationships in retrieval by visual contents. IEEE workshop on Image and Video Libraries, June 1998.
  14. V. Gouet and N. Boujemaa. Object-based queries using color points of interest. IEEE Workshop on Content-Based Access of Image and Video Libraries (CBAIVL), 2001.
  15. M. Swain and D. Ballard. Color indexing. International Journal of Computer Vision (IJCV), Vol. 7, No. 1, pp. 11-32, 1991. https://doi.org/10.1007/BF00130487
  16. J. R. Smith and S. F. Chang. Tools and techniques for color image retrieval. IST/SPIE Proceedings, pp. 426-437, 1996.
  17. C. Carson and al. Blobworld: A system for region-based image indexing and retrieval. Proc. of International Conference on Visual Information System, LNCS Vol. 1614, pp. 509-517, 1999.
  18. J. Fauqueur and N. Boujemaa. Region-based image retrieval: Fast coarse segmentation and ne color description. Journal of Visual Languages and Computing (JVLC), special issue on Visual Information Systems, Vol. 15, No. 1, pp. 69-95, 2004.
  19. I. J. Cox, M. L. Miller, and T. P. Minka. The bayesian image retrieval system, pichunter: Theory, implementation and psychological experiments. IEEE Transactions on Image Processing, Vol. 9, No. 1, pp. 20-37, 2000. https://doi.org/10.1109/83.817596
  20. W. Niblack, R. Barber, W. Equitz, M. Flickner, and al. The QBic project: querying images by content using color, texture, and shape. Proc. SPIE (Storage and Retrieval for Image and Video Databases), 1908, pp. 173-187, 1993.
  21. M. Swain and D. Ballard. Color indexing. International Journal of Computer Vision (IJCV), Vol. 7, No. 1, pp. 11-32, 1991. https://doi.org/10.1007/BF00130487
  22. N. Boujemaa, J. Fauqueur, and V. Gouet. What's beyond query by example? book chapter from Trends and Advances in Content-Based Image and Video Retrieval, L. Shapiro, H.P. Kriegel, R. Veltkamp (ed.). LNCS, Springer Verlag, 2004.
  23. J. Fauqueur and N. Boujemaa. Mental image search by boolean composition of region categories. to appear in Multimedia Tools and Applications, 2004.
  24. J. R. Smith and S. F. Chang. Visualseek: A fully automated content-based image query system. ACM Multimedia Conference, Boston, MA, USA, pp. 87-98, 1996.
  25. A. DelBimbo and P. Pala. Visual image retrieval by elastic matching of user sketches. IEEE Trans-actions on Pattern Analysis and Machine Intelligence, Vol. 19, No. 2, february 1997.
  26. D. Squire, W. Muller, H. Muller, and J. Raki. Content-based query of image databases, inspirations from text retrieval: inverted les, frequency-based weights and relevance feedback. 11th Scandinavian Conference on Image Analysis (SCIA) Kangerlussuaq, Greenland, 1999.
  27. N. Taniguchi, H. Akama, and M. Yamamuro. Multiple inverted array index structure for asymmetric similarity measure. Proceedings of Challenge of Image Retrieval, 1998.
  28. M. Swain and D. Ballard. Color indexing. International Journal of Computer Vision (IJCV), Vol. 7, No. 1, pp. 11-32, 1991. https://doi.org/10.1007/BF00130487
  29. jjoyeol.springnote.com/.../attachments/126774
  30. W. I. Grosky, "multimedia Information Systems", IEEE Multimedia, Vol.1, No. 1, Spring 1994.