• 제목/요약/키워드: textural features

검색결과 61건 처리시간 0.031초

Anti-Spoofing Method for Iris Recognition by Combining the Optical and Textural Features of Human Eye

  • Lee, Eui Chul;Son, Sung Hoon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제6권9호
    • /
    • pp.2424-2441
    • /
    • 2012
  • In this paper, we propose a fake iris detection method that combines the optical and textural features of the human eye. To extract the optical features, we used dual Purkinje images that were generated on the anterior cornea and the posterior lens surfaces based on an analytic model of the human eye's optical structure. To extract the textural features, we measured the amount of change in a given iris pattern (based on wavelet decomposition) with regard to the direction of illumination. This method performs the following two procedures over previous researches. First, in order to obtain the optical and textural features simultaneously, we used five illuminators. Second, in order to improve fake iris detection performance, we used a SVM (Support Vector Machine) to combine the optical and textural features. Through combining the features, problems of single feature based previous works could be solved. Experimental results showed that the EER (Equal Error Rate) was 0.133%.

질감 특징을 고려한 영상 흐려짐 검출 방법 (Texture-aware Blur Detection)

  • 정찬호;김원준
    • 방송공학회논문지
    • /
    • 제25권1호
    • /
    • pp.58-66
    • /
    • 2020
  • 영상 촬영 시 객체의 움직임, 탈초점(Out-of-focus) 등의 이유로 영상 흐려짐 현상이 빈번하게 발생하며, 이 과정에서 선명한 영역의 고주파 성분이 급격하게 감소하게 된다. 이러한 성질을 바탕으로, 본 논문에서는 질감 특징 표현자를 사용하여 별도의 주파수 변환 과정 없이 고주파 성분을 추정하고, 이를 바탕으로 흐려진 영역을 검출하는 방법을 제안한다. 제안하는 방법은 학습 기반 질감 표현자와 유역(Watershed) 기반 질감 표현자를 함께 이용하여 다양한 환경에서도 흐려진 영역을 검출할 수 있다. 또한, 흐려짐을 검출하는 최소 단위를 화소 단위에서 영역 단위로 확장하여 처리 속도를 향상시키고, 영상 보정 기법을 이용하여 흐려짐 검출 성능을 개선하였다. 실험 결과는 제안하는 방법이 기존의 흐려짐 검출 방법 대비 성능이 향상되었음을 보여준다.

Shape-Based Classification of Clustered Microcalcifications in Digitized Mammograms

  • Kim, J.K.;Park, J.M.;Song, K.S.;Park, H.W.
    • 대한의용생체공학회:의공학회지
    • /
    • 제21권2호
    • /
    • pp.137-144
    • /
    • 2000
  • Clustered microcalcifications in X-ray mammograms are an important sign for the diagnosis of breast cancer. A shape-based method, which is based on the morphological features of clustered microcalcifications, is proposed for classifying clustered microcalcifications into benign or malignant categories. To verify the effectiveness of the proposed shape features, clinical mammograms were used to compare the classification performance of the proposed shape features with those of conventional textural features, such as the spatial gray-leve dependence method and the wavelet-based method. Image features extracted from these methods were used as inputs to a three-layer backpropagation neural network classifier. The classification performance of features extracted by each method was studied by using receiver operating-characteristics analysis. The proposed shape features were shown to be superior to the conventional textural features with respect to classification accuracy.

  • PDF

CT Image Analysis of Hepatic Lesions Using CAD ; Fractal Texture Analysis

  • Hwang, Kyung-Hoon;Cheong, Ji-Wook;Lee, Jung-Chul;Lee, Hyung-Ji;Choi, Duck-Joo;Choe, Won-Sick
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2007년도 춘계학술발표대회
    • /
    • pp.326-327
    • /
    • 2007
  • We investigated whether the CT images of hepatic lesions could be analyzed by computer-aided diagnosis (CAD) tool. We retrospectively reanalyzed 14 liver CT images (10 hepatocellular cancers and 4 benign liver lesions; patients who presented with hepatic masses). The hepatic lesions on CT were segmented by rectangular ROI technique and the morphologic features were extracted and quantitated using fractal texture analysis. The contrast enhancement of hepatic lesions was also quantified and added to the differential diagnosis. The best discriminating function combining the textural features and the values of contrast enhancement of the lesions was created using linear discriminant analysis. Textural feature analysis showed moderate accuracy in the differential diagnosis of hepatic lesions, but statistically insignificant. Combining textural analysis and contrast enhancement value resulted in improved diagnostic accuracy, but further studies are needed.

Prediction Models for Solitary Pulmonary Nodules Based on Curvelet Textural Features and Clinical Parameters

  • Wang, Jing-Jing;Wu, Hai-Feng;Sun, Tao;Li, Xia;Wang, Wei;Tao, Li-Xin;Huo, Da;Lv, Ping-Xin;He, Wen;Guo, Xiu-Hua
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권10호
    • /
    • pp.6019-6023
    • /
    • 2013
  • Lung cancer, one of the leading causes of cancer-related deaths, usually appears as solitary pulmonary nodules (SPNs) which are hard to diagnose using the naked eye. In this paper, curvelet-based textural features and clinical parameters are used with three prediction models [a multilevel model, a least absolute shrinkage and selection operator (LASSO) regression method, and a support vector machine (SVM)] to improve the diagnosis of benign and malignant SPNs. Dimensionality reduction of the original curvelet-based textural features was achieved using principal component analysis. In addition, non-conditional logistical regression was used to find clinical predictors among demographic parameters and morphological features. The results showed that, combined with 11 clinical predictors, the accuracy rates using 12 principal components were higher than those using the original curvelet-based textural features. To evaluate the models, 10-fold cross validation and back substitution were applied. The results obtained, respectively, were 0.8549 and 0.9221 for the LASSO method, 0.9443 and 0.9831 for SVM, and 0.8722 and 0.9722 for the multilevel model. All in all, it was found that using curvelet-based textural features after dimensionality reduction and using clinical predictors, the highest accuracy rate was achieved with SVM. The method may be used as an auxiliary tool to differentiate between benign and malignant SPNs in CT images.

축소변환된 의료 이미지의 질감 특징 추출과 인덱싱 (An Extracting and Indexing Schema of Compressed Medical Images)

  • 위희정;엄기현
    • 한국멀티미디어학회:학술대회논문집
    • /
    • 한국멀티미디어학회 2000년도 춘계학술발표논문집
    • /
    • pp.328-331
    • /
    • 2000
  • In this paper , we propose a texture feature extraction method of reduce the massive computational time on extracting texture, features of large sized medical such as MRI, CT-scan , and an index structure, called GLTFT, to speed up the retrieval performance. For these, the original image is transformed into a compressed image by Wavelet transform , and textural features such as contrast, energy, entropy, and homogeneity of the compressed image is extracted by using GLCM(Gray Level Co-occurrence Metrix) . The proposed index structure is organized by using the textural features. The processing in compressed domain can give the solution of storage space and the reduction of computational time of feature extracting . And , by GLTFT index structure, image retrieval performance can be expected to be improved by reducing the retrieval range . Our experiment on 270 MRIs as image database shows that shows that such expectation can be got.

  • PDF

화상분석을 이용한 소프트 센서의 설계와 산업응용사례 1. 외관 품질의 수치적 추정과 모니터링 (Soft Sensor Design Using Image Analysis and its Industrial Applications Part 1. Estimation and Monitoring of Product Appearance)

  • 유준
    • Korean Chemical Engineering Research
    • /
    • 제48권4호
    • /
    • pp.475-482
    • /
    • 2010
  • 화상분석(image analysis)을 이용하여 제품의 외관(外觀) 품질을 정량적으로 추정할 수 있는 소프트 센서를 설계하고, 이를 제품의 품질 모니터링에 적용하는 연구를 수행하였다. 여기에 사용된 방법론은 크게 다음의 세 단계로 구성되어 있다: (1) 웨이블릿 변환(wavelet transform)을 이용한 화상으로부터의 질감(texture) 특징 추출, (2) 추출된 질감특징의 부공간 투영(projection on subspace)을 통한 제품 외관의 추정, 그리고 (3) 질감특징의 잠재변수(latent variables) 즉, 외관의 수치적 추정치를 목적에 맞게 사용. 이 방법에서는 제품의 외관을 서로 다른 불연속적인 부류로의 분류 보다는, 연속적인 외관 변화를 일관적이고 정량적으로 추정하는데 초점을 두고자 한다. 이 방법은 인조대리석 외관의 수치적 추정과 품질 모니터링 적용사례를 통해 설명되었다.

MULTISPECTRAL IMAGING APPLICATION FOR FOOD INSPECTION

  • Park, Bosoon;Y.R.Chen
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 1996년도 International Conference on Agricultural Machinery Engineering Proceedings
    • /
    • pp.755-764
    • /
    • 1996
  • A multispectral imaging system with selected wavelength optical filter was demonstrated feasible for food safety inspection. Intensified multispectral images of carcasses were obtained with visible/near-infrared optical filters(542-847 nm wavelengths) and analyzed. The analysis of textural features based on co-occurrence matrices was conducted to determine the feasibility of a multispectral image analyses for discriminating unwholesome poultry carcasses from wholesome carcasses. The mean angular second moment of the wholesome carcasses scanned at 542 nm wavelength was lower than that of septicemic (P$\leq$0.0005) and cadaver(P$\leq$0.0005) carcasses. On the other hand, for the carcasses scanned at 700nm wavelength , the feature values of septicemic and cadaver carcasses were significantly (P$\leq$0.0005) different from wholesome carcasses. The discriminant functions for classifying poultry carcasses into three classes (wholesome, septicemic , cadaver) were developed using linear and quadr tic covariance matrix analysis method. The accuracy of the quadratic discriminant models, expressed in rates of correct classification, were over 90% for the classification of wholesome, septicemic, and cadaver carcasses when textural features from the spectral images scanned at the wavelength of 542 and 700nm were utilized.

  • PDF

Region of Interest Heterogeneity Assessment for Image using Texture Analysis

  • Park, Yong Sung;Kang, Joo Hyun;Lim, Sang Moo;Woo, Sang-Keun
    • 한국컴퓨터정보학회논문지
    • /
    • 제21권11호
    • /
    • pp.17-21
    • /
    • 2016
  • Heterogeneity assessment of tumor in oncology is important for diagnosis of cancer and therapy. The aim of this study was performed assess heterogeneity tumor region in PET image using texture analysis. For assessment of heterogeneity tumor in PET image, we inserted sphere phantom in torso phantom. Cu-64 labeled radioisotope was administrated by 156.84 MBq in torso phantom. PET/CT image was acquired by PET/CT scanner (Discovery 710, GE Healthcare, Milwaukee, WI). The texture analysis of PET images was calculated using occurrence probability of gray level co-occurrence matrix. Energy and entropy is one of results of texture analysis. We performed the texture analysis in tumor, liver, and background. Assessment textural features of region-of-interest (ROI) in torso phantom used in-house software. We calculated the textural features of torso phantom in PET image using texture analysis. Calculated entropy in tumor, liver, and background were 5.322, 7.639, and 7.818. The further study will perform assessment of heterogeneity using clinical tumor PET image.

Determination of Absorbed Dose for Gafchromic EBT3 Film Using Texture Analysis of Scanning Electron Microscopy Images: A Feasibility Study

  • So-Yeon Park
    • 한국의학물리학회지:의학물리
    • /
    • 제33권4호
    • /
    • pp.158-163
    • /
    • 2022
  • Purpose: We subjected scanning electron microscopic (SEM) images of the active layer of EBT3 film to texture analysis to determine the dose-response curve. Methods: Uncoated Gafchromic EBT3 films were prepared for direct surface SEM scanning. Absorbed doses of 0-20 Gy were delivered to the film's surface using a 6 MV TrueBeam STx photon beam. The film's surface was scanned using a SEM under 100× and 3,000× magnification. Four textural features (Homogeneity, Correlation, Contrast, and Energy) were calculated based on the gray level co-occurrence matrix (GLCM) using the SEM images corresponding to each dose. We used R-square to evaluate the linear relationship between delivered doses and textural features of the film's surface. Results: Correlation resulted in higher linearity and dose-response curve sensitivity than Homogeneity, Contrast, or Energy. The R-square value was 0.964 for correlation using 3,000× magnified SEM images with 9-pixel offsets. Dose verification was used to determine the difference between the prescribed and measured doses for 0, 5, 10, 15, and 20 Gy as 0.09, 1.96, -2.29, 0.17, and 0.08 Gy, respectively. Conclusions: Texture analysis can be used to accurately convert microscopic structural changes to the EBT3 film's surface into absorbed doses. Our proposed method is feasible and may improve the accuracy of film dosimetry used to protect patients from excess radiation exposure.