• Title/Summary/Keyword: textile finishing

Search Result 1,573, Processing Time 0.027 seconds

Study on Thermal and Mechanical Properties of Epoxy Resin Nanocomposites with the Graphene Oxide (산화그래핀 첨가에 따른 에폭시 나노 복합재료의 열적 및 기계적 특성 연구)

  • Sim, Ji-hyun;Yu, Seong-hun;Lee, Jong-hyuk;Kim, Gun-soo;Chon, Jin-sung;Park, Sung-min
    • Textile Coloration and Finishing
    • /
    • v.30 no.2
    • /
    • pp.98-106
    • /
    • 2018
  • In this study, graphene oxide(GO) was synthesized by using Hummer's method. Then, GO was used as a additive for epoxy resin nanocomposites that were prepared by mixing Tetraglycidyl diamino diphenyl methane(TGDDM) and hardner(MDEA+M-MIPA). Thermal and mechanical properties of epoxy resin nanocomposites were confirmed by analytical methods such as TG-DTA, DMA, fracture toughness, tensile strength, and flexural strength. The fracture surfaces of epoxy resin nanocomposites with different content of the GO were observed by a Scanning Electron Microscope(SEM). The mechanism for mechanical properties of epoxy resin nanocomposites was analyzed by modeling of nanocomposites with different GO weight. Due to the GO, both the heat resistance and the glass transition temperature of the epoxy resin nanocomposites were improved. Interestingly, when 0.1wt.% of GO was added to the epoxy resin/hardner mixture, the properties of mechanical increased compared with the neat epoxy resin. This results were caused by an aggregation between the GO.

Seam Characteristics of Breathable Waterproof Fabrics with Various Finishing Methods

  • Jeong, Won-Young;An, Seung-Kook
    • Fibers and Polymers
    • /
    • v.4 no.2
    • /
    • pp.71-76
    • /
    • 2003
  • We evaluated the seam characteristics with finishing, seaming and sealing processes and seam Puckering behavior of the breathable waterproof fabrics with laser scan. There were differences in 99% significant level between the seamed fabric and the sealed fabric. Seam breakage was initiated with the breakage of sewing thread, so the seam strength after seaming was almost uniform. The sewn seam strength and elongation increased with sealing process in all finishing methods. Pucker grade of laminating type was generally much higher than that of the coating type. We confirmed that wave length and amplitude have more important meaning than the number of weave in the breathable waterproof fabrics. The puckering in breathable waterproof fabrics is mainly occurred by inherent and feeding pucker. The former if due to the insertion of sewing thread and the littler is caused by differential feeding when two pieces of fabric are fed into the gap between a press foot and needle plate.

Moisture Adsorption and Desorption Property of the Wallpaper using Natural Substance (천연 물질을 적용한 벽지의 흡·방습 성능에 관한 연구)

  • Hwang, Hye-jin;Kim, Dong-kwon;Jeong, Jae-sik;Bae, Jin-seok
    • Textile Coloration and Finishing
    • /
    • v.27 no.3
    • /
    • pp.210-218
    • /
    • 2015
  • In this study, natural substance and mineral materials was used for architectural interior wallpaper. Because natural substance and minerals are environment-friendly material with moisture adsorption and desorption properties. Natural substance and mineral materials was evaluated in moisture adsorption and desorption properties. Also, in the diatomite, the pores were observed on SEM photographs. Thus, it is supposed that moisture adsorption and desorption properties were influenced by the microstructure of the pore. The wallpaper according to the ratio of the mixture was analyzed for physical properties and moisture adsorption & desorption properties. As a result, we developed a wallpaper having excellent hygrothermal performance.

Physical Properties and Dyeability of Wool/Polyester Spun Blend Yarn and Its Fabrics Using Air Blowing and Electrostatic Spinning Technology(Cyclone) (공기분사 전기방적 기술(Cyclone)을 이용한 Wool/Polyester 혼섬사 소재의 물성 및 염색성)

  • Kim, Mikyung;Kim, Dongkwon;Jeong, Jaeseok;Jang, Bongsik
    • Textile Coloration and Finishing
    • /
    • v.28 no.2
    • /
    • pp.77-91
    • /
    • 2016
  • Recently, the spun blend yarns with staple fibers and filaments are being developed in the spinning process using an air blowing and electrostatic spinning technology(cyclone) in order to enhance the soft feeling and the fine count spun blend yarn manufacturing competitiveness. In this study, the appropriate separation condition of polyester multifilament was examined according to the treatment condition of conductive agents and voltage on polyester multifilament in the newly developed cyclone spinning process. And it was investigated the physical properties and dyeability of the cyclone wool/polyester spun blend yarns and its wool composite fabrics in comparison with existing sirofil wool/polyester spun blend yarn and its fabrics. As the result, it is determined that the newly developed cyclone wool/polyester spun blend yarn applied fabrics has a superior quality level in terms of practicality.

Physicochemical Properties of Non-Formaldehyde Resin Finished Cotton Fabric and their Optimal Treatment Condition (비포름알데하이드계 수지 가공제 처리한 면직물의 물리화학적 특성 변화와 최적 처리 조건에 관한 연구)

  • Kim, Han-Gi;Yoon, Nam-Sik;Huh, Man-Woo;Kim, Ick-Soo
    • Textile Coloration and Finishing
    • /
    • v.24 no.2
    • /
    • pp.121-130
    • /
    • 2012
  • Cotton fabrics were treated with some commercial non-formaldehyde and low-formaldehyde resins, and then their effect on the physicochemical properties were respectively investigated including formaldehyde release, tear strength, shrinkage, and wrinkle recovery. Formaldehyde release less than 10ppm was obtained only by non-formaldehyde resin. Considering other factors, the optimal concentration of non-formaldehyde resin was shown to be 9-11%. In case of low-formaldehyde type, 5-7% resin concentration and curing temperature of $160{\sim}170^{\circ}C$ were recommended for optimal finishing condition. The choice and combination of resins and catalysts were also important factors, and preliminary considerations before treating cotton fabrics with resins used in this study are also important to get much better results.